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Abstract

We analyze the growth rates of atmospheric carbon dioxide and hu-
man population, by comparing the relative merits of two benchmark
models, the exponential law and the finite-time-singular (FTS) power
law. The later results from positive feedbacks, either direct or mediated
by other dynamical variables, as shown in our presentation of a simple
endogenous macroeconomic dynamical growth model. Our empirical
calibrations confirm that human population has decelerated from its
previous super-exponential growth until 1960 to “just” an exponential
growth, but with no sign of more deceleration. As for atmospheric
CO2 content, we find that it is at least exponentially increasing and
most likely characterized by an accelerating growth rate as off 2009,
consistent with an unsustainable FTS power law regime announcing
a drastic change of regime. The coexistence of a quasi-exponential
growth of human population with a super-exponential growth of car-
bon dioxide content in the atmosphere is a diagnostic that, until now,
improvements in carbon efficiency per unit of production worldwide
has been dramatically insufficient.

1 Introduction

Today humanity uses the equivalent of 1.5 planets to provide the resources we
use and absorb our waste. This means it now takes the Earth one year and
six months to regenerate what we use in a year.1 — Is humanity inevitably
doomed?

During the 1960, leaders were most concerned about human population
growth (see for instance [28]) and about depletion of energy resources (see
for example the first report by the Club of Rome [15] and its recent reassesse-

1http://www.footprintnetwork.org/en/index.php/GFN/page/world_footprint/
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ment [10]). As a matter of fact, the growth rate2 of human population has
peaked in the late 1960s and although population is still growing, it is no
longer the prime concern of policy leaders. This may be ill-advised as we
show below that population growth is not decelerating anymore, being on a
stable exponential (proportional) growth trajectory.

More recently, scientist and politicians became aware of global warm-
ing (see [30] for a historic overview), perhaps due to or augmented by an-
thropogenic effects (we do not enter this debate). We focus here on the
undisputed fact that, due to the massive use of fossil energies, the world
economy emits, among many other products, large amounts of carbon diox-
ide into the atmosphere. Part of this carbon dioxide is later absorbed by the
oceans and plants. The fraction of carbon dioxide found in the atmosphere
is currently around 50% of the total anthropogenic emissions, with a slight
upward trend [16]. Once in the atmosphere, this CO2 is thought to play a
pivotal role in global warming. In a recent Nature issue [17], climate change
due to CO2 emissions is identified as one of the most pressing problems that
mankind needs to address.

Ref. [29] discuss the IPAT identity which identifies the most important
factors which drive carbon dioxide emissions. They write carbon dioxide
emissions as the result of three factors

I = P ·A′ · T, (1)

where I (impact) denotes the carbon dioxide emissions, P is human pop-
ulation, A′ represents the affluence (measured as gross world product per
capita) and T is technology.

The IPAT identity is useful to help thinking about the contributions of
different variables and has been extensively used and discussed in the litera-
ture (see for instance [3]). However, because one deals fundamentally with a
complex dynamical system driven by entangled feedback loops with delays,
the IPAT identity falls short, in our opinion, of providing the framework to
understand the inter-relationships between the dynamical variables. It is
especially important to develop a dynamical framework with delays, when
studying the time-evolution of global variables such as atmospheric carbon
dioxide content and human population. Therefore, motivated by a dynami-
cal view of the human-Earth system, we present here a framework borrow-
ing from the theory of endogenous macroeconomic growth [14, 18], whose
feedback loops are shown to generate robust regimes of super-exponential

2The growth rate r of the human population (or of any other variable) is defined
by expression (2). Thus, a constant growth rate corresponds to a population growing
exponentially, with a doubling time given by (log 2)/r. As the present growth rate is
r(2010) ≈ 1.8% per year, this gives a present doubling time of 38.5 years. If nothing
changes, the present 6.8 billion people will be more than 13 billion in 2050! This is in
contradiction with projections of OECD for instance and other international organizations,
which optimistically expect human population to stabilize around 9 billion individuals.
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growth. Mathematically, these regimes can be described by simple equa-
tions, whose solutions exhibit finite-time singular (FTS) power law be-
haviors. The interest in such solutions is that they point to change of
regimes [7, 12,19].

The article is organized as follows. We presents a simple mathematical
framework to model growth, first for a single variable like population in
the presence of positive feedback, and then with several coupled variables,
such as population, capital and technology. Two benchmark models, the
exponential law and the FTS power law, are obtained as limiting cases of
the theoretical framework. Then we describe the results of the calibration
of these two models to some of the most extensive data sources on human
population and atmospheric CO2 content in the last two centuries up to
present. The final section concludes.

2 Growth models

2.1 Generalization of Exponential Growth

The benchmark for population growth is the Malthus model, which postu-
lates that population growth is proportional to the population itself, cap-
turing the simple idea that the number of children is proportional to the
number of parents:

dp

dt
= r · p(t) . (2)

The solution of equation (2) is the exponential function

p(t) = a′ exp(r · t) + c′ . (3)

Historically, equation (2) has been improved by [26, 27] into the logis-
tic equation, to account for the competition for scarce resources between
individuals. This competition can be embodied into the quadratic term
−r[p(t)]2/K, where K is the carrying capacity. This negative feedback of
the population on the growth rate r → r(1 − p(t))/K leads to a cross over
from the exponential growth for p(t)� K to a saturation of the population
at long times, which asymptotically converges to K. Verhulst thought that
Malthus was wrong (and therefore over-pessimistic when comparing human
growth with food resources) not to take into account the negative feedbacks
embodied in the quadratic term −r[p(t)]2/K, that would lead naturally to
an equilibrium.

But, the human population at the time of Verhulst and until around
1960 has followed neither his specification, nor the Malthusian exponential
growth. As reviewed by [12] and references therein, the human population
has grown faster than exponential, with the growth rate r growing itself.

The simplest generalization of equation (2) that accounts for this obser-
vation assumes that the growth rate r becomes r · [p/p0]δ, where δ > 0 and
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p0 is some reference population. The positivity of δ captures the positive
feedback of population on the growth rate: the larger the population, the
larger the growth rate! Equation (2) then transforms into

dp

dt
= R · p(t)1+δdt , (4)

where R = r/pδ0. The solution of equation (4) reads

p(t) ∝ (tc − t)−1/δ if δ > 0 . (5)

Here, the critical time tc at which the solution diverges is determined from
the parameters of equation (4) and the initial population. For δ = 0,
we recover the exponential solution (3), seen as the limit of a finite-time-
singularity (FTS) power law with exponent tending to zero. The singu-
lar solution (5) was first discussed by von Foerster et al. [28] (see [25] for
assessments of the relative merits of the “natural science” versus the “de-
mographic” approach, [14] for an economic underpinning that we explore
later, and [12,13] for extensive generalizations). In ecology, the positive cor-
relation between population density and the per capita population growth
rate at the origin of the FTS behavior (5) is known as the Allee effect,
see for instance [24]. More generally, Allee discovered the existence of an
often present positive relationship between some component of individual
fitness and either numbers or density of conspecifics. The Allee effect is
usually used to refer to the self-reinforcing feedbacks that promote accel-
erate extinction of species, that can be modeled by finite-time crossing of
zero, see [31]. Goriely provides a rigorous mathematical framework [9] with
a generalized version of equation (4), where the right hand side is replaced
by an arbitrary polynomial of p(t).

The use of the mathematics of FTS to describe and diagnose changes of
regime is not new. For instance, we refer to [12, 22] for population dynam-
ics and financial markets, [19] for applications to engineering failures and
earthquakes, [21, 23] for a large variety of systems, [5] for climate systems,
and [2, 6, 20] for environmental systems. These authors applied the concept
of dynamical phase transitions and FTS to different systems exhibiting a
bifurcation, crisis, catastrophe or tipping point, by showing how specific
signatures can be used for advance warnings.

One can generalize (4) to take into account positive feedbacks of the
growth rate d ln p/dt on its rate of change d2 ln p/dt2 (see [11]), to arrive
at solutions that exhibit FTS not in the variable p(t), but in its derivative
dp/dt. We will thus use the slightly more general expression encompassing
these cases:

ppower(t) = a(tc − t)−1/δ + c . (6)

A FTS in dp/dt and not in p(t) corresponds to −∞ < δ < −1 such that 0 <
−1/δ < 1, together with a < 0 for an increase up to the value ppower(tc) = c.
Here, the meaning of the exponent δ is different from its use in equation (4).
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We shall use the exponential model (3) and the power law model (6), as
our two competing hypotheses. The essential difference between the expo-
nential model and the power law model is that the former is defined for all
times, while the later is valid only up to a finite time, the critical time tc
beyond which the solution ceases to exist. The singular behavior at tc is not
meant to predict a genuine divergence but only, as already stressed, that the
system is exhibiting a transition to a qualitatively new regime.

2.2 Properties distinguishing the exponential and the power
law model

Heated discussions among demographers greeted the publication of the pa-
per [28] concerning the singular solution (5): the demographers criticized
the use of mathematical models such as (4) as perhaps the clearest illus-
tration of how bad use of mathematics may yield senseless results; actually,
what the demographers missed was that the FTS should not be taken at face
value, but as the signature of a transition to a new regime. Singularities do
not exist in natural and social systems, but the singularities of our approxi-
mate mathematical models are usually very good diagnostic of the change of
regimes that occur in these systems. The perhaps clearest examples are the
phase transitions between different states of matter (solid-liquid-gas-plasma,
magnetized to non-magnetized, and so on) that statistical physics describes
so well with its classification involving the nature of the singularity exhibited
by the free energy of the system [8].

As t approaches tc from below, two regimes can be observed for the
power law model:

δ < 0: (tc − t)−1/δ goes to zero for t→ tc and ppower(t)→ c.

δ > 0: (tc − t)−1/δ goes to infinity for t→ tc and ppower(t)→ sign(a) · ∞.

Figure 6 in the SI illustrates the qualitatively different behaviors allowing
one to distinguish between the linear growth model (dp(t)/dt ∼ t), the
exponential model (3) and the power law model (6), in different standard
plot representations.

2.3 Faster-than-exponential growth by feedbacks between macro-
economic variables

Up to now, we have postulated the form (4) to capture the possible exis-
tence of a positive feedback of population on the population growth rate.
Such a simplified ansatz leaves two issues unresolved. First, the positive
feedback of population on growth rate may not be direct, but mediated by
other variables via indirect mechanisms. Second, the consequences on the
dynamics of carbon dioxide emissions are not clear. We thus address these
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two issues using an economic framework developed by Kremer [14], following
the approach of Johansen and Sornette [12]. The following derivation is not
intended to represent a faithful economic growth model that we would like to
promote, but is offered to illustrate the importance of indirect mechanisms
in growth processes. In particular, we would like to stress the fact that
faster-than-exponential growth is a robust outcome of multi-dimensional
loop processes. Even when each feedback process individually leads to an
exponential or even a subdued sub-exponential growth, the overall dynamics
can be super-exponential.

In economics, population p(t) translates into labor force L(t), which is
assumed to be proportional to p(t). In addition to population represented
by the labor force, we consider the effect of technology level A(t) and of the
amount K(t) of available capital. In the presence of labor and capital, with
a given technology level, the economy is going to produce an output Y (t), for
instance proxied by GDP. In the macroeconomics of endogenous growth [18],
it is common to use the Cobb-Douglas equation (originally developed by [4]
and extensively discussed in [18]) to relate the total output to labor, capital
and technology as follows3:

Y (t) = K(t)α(A(t)L(t))1−α ,with 0 < α < 1 . (7)

Furthermore, we use the assumption by Solow that a constant fraction s of
the economy goes to savings , i.e. capital grows according to

dK

dt
= sY (t) . (8)

Following [14], we assume that, as already mentioned, labor is proportional
to capital

K(t) ∼ L(t) . (9)

We further assume that technology change is depending on capital, labor
and current level of technology according to

dA

dt
= dK(t)η × L(t)γ ×A(t)θ , (10)

where the exponents η, γ and θ are all positive, expressing a positive feedback
effect of each of the variables on the growth of technology. Putting together
all these ingredients, we can rewrite the Kremer (9) and Solow (8) equations

3A′ in the IPAT equations stands for gross world product per capita, whereas in the
Cobb-Douglas equation A stands for technology. Further, the IPAT equation uses T
instead of A to denote technology. Similar, the macro-economists refer to L as labor,
whereas P in the IPAT equality stands for population. We will not distinguish between
labor L and population P and use the terms interchangeably.
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as a system of two coupled ordinary differential equations:

dA

dt
= eL(t)η+γ ×A(t)θ, (11)

dL

dt
= fL(t)×A(t)1−α . (12)

Equation (12) basically states that labor (and thus population) is growing
exponentially, holding technology constant. In other words, the growth rate
of population is controlled by a nonlinear function of technology. Here, this
nonlinear function is a power law with exponent 0 < 1 − α < 1, which
embodies the benefits that technology brings in decreasing death rates, for
instance via improvement in health care. Invoking this mechanism is stan-
dard in demographic research.

We look for solutions exhibiting a FTS of the form

A(t) = A0(tc − t)−1/µ , (13)

L(t) = L0(tc − t)−1/κ . (14)

Note that the critical time tc of the singularity, if it exists, is necessarily the
same for both variables, as seen from inspection of the two coupled equations
(11,12). Inserting this ansatz in equations (11,12), we obtain a system of
differential equations for the unknown exponents µ and κ, whose solutions
read

µ = 1− α , (15)

κ =
η + γ

2− θ − α
(1− α) . (16)

The condition for the solutions (13,14) to hold is that µ and κ be strictly
positive. This implies 0 < α < 1 and α < 2−θ. If θ ≤ 1, then the conditions
are always satisfied in the regime where the Cobb-Douglas equation holds.
The case θ ≤ 1 is particularly interesting because it corresponds to a sub-
exponential growth of technology, for a fixed labor force. In other words,
for a fixed population level, equation (11) gives a long-time growth of the

form A(t) ∼ t
1

1−θ , which is sub-exponential (slower than exponential) for
θ < 1 and exactly exponential for θ = 1. It is the coupling between a
sub-exponential growth of A(t) and an exponential growth of population
L(t) mediated by nonlinear feedback loops that create the super-exponential
finite-time singularity. This behavior underlies the possible traps of single
variable analysis.

These results can be translated into a prediction of carbon dioxide emis-
sion via the following simple assumption. Assuming that carbon dioxide
emissions are proportional to production divided by some power of technol-
ogy ξ, we have

dCO2

dt
=

Y (t)

A(t)ξ
= h(tc − t)−1/ϕ, (17)
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where ϕ = (1/κ − ξ/µ + 1)−1 (see SI for details of the derivation) and
CO2 stands for the total carbon dioxyde content in the atmosphere. The
introduction of a non-zero exponent ξ accounts for the common observation
that more developed countries tend to have a lower footprint and smaller
carbon emissions per unit of output, due to the progressive adoption of more
efficient technologies and the increasing importance of a clean environment
in the utility functions of consumers.

Let us thus stress the main result of this exercise. We have dA
dt ∼ A(t)θ

at fixed labor with θ < 1 and dL
dt ∼ L(t) at fixed technology. Thus, there is

no way to get a faster-than-exponential growth in any of these two variables
alone. However, when coupling them via the feedback of labor on technol-
ogy and that of technology on labor, the FTS power law solutions (13,14)
emerge. Hence, a finite-time singularity can be created from the interplay of
several growing variables resulting in a non-trivial behavior: the interplay
between different quantities may produce an “explosion” in the population
even though the individual dynamics do not!

Of course, infinities do not exist on a finite Earth! These singularities
should not be interpreted as the prediction of real “blow-ups”. They can be
however faithful description of the transient dynamics up to a neighborhood
of the predicted critical time tc. Around tc, new mechanisms kick in and
produce a change of regime.

To illustrate the above point, let us go through a detailed scenario where
the individual processes stay finite in finite time, but the combination via
feedback can lead to finite time singularities. Consider the following param-
eters

α = 1
4 : as in the seminal paper [4].

θ = 1: Linear feedback from technology A on itself. Holding all other factors
constant, technology will grow exponentially (see equation (10)).

η + γ = 1: The simplest possible, non-trivial, assumption.

With these numbers, we obtain the two exponents µ = 3/4 and κ = 1 for
the equations (13) and (14), respectively, and the value 1/ϕ = 5/3 for the
rate of carbon dioxide emission given by equation (17), assuming carbon
dioxide emission per capita technology is as efficient as general technology
A, i.e. α = ξ = 1/4. Although, we have only assumed exponential growth of
all individual factors, carbon dioxide emission is predicted in this example
to grow faster than exponential, leading to a mathematical FTS which is the
signature of a non-sustainable regime towards a new behavior (see Figure 8).

Even less stringent conditions for a FTS to occur are needed when the
description of the dynamics of the system in terms of two coupled equations
(11,12) is augmented to take into account the dynamics of additional cou-
pled variables, leading to systems of three or four coupled equations. Such
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additional positive feedback loops include nonlinear lagged dependencies of
capital on labor (thus extending Kremer’s simplifying assumption (9)).

3 Empirical tests on human population and atmo-
spheric carbon dioxide content

3.1 Population

Figure 7 shows that the growth rate of the World population was a strongly
increasing function of time till the late 1950s. A sharp decrease of the growth
rate occurred, then followed by a resumed acceleration till its peak in 1964,
from which a slow decrease can be observed.

The first regime till about 1960 is incompatible with the exponential
model, which corresponds to a constant growth rate. Figure 1 shows that,
over the time period 1850 to 1965, the exponential model is inferior to
the FTS power law model. Using model (4), we estimate that the growth
exponent δ is approximately equal to 2, that is, even larger than the value 1
estimated by [28]: clearly, population growth over this time period was faster
than exponential and the FTS power law model accounts parsimoniously for
the data.

Figure 2 shows that, over the time period from 1970 to 2008, the expo-
nential model (3) and the FTS power law model (6) are indistinguishable.
By Occam’s razor, the exponential model with an approximately constant
growth rate is then preferred.

3.2 Carbon Dioxide content in the atmosphere

Figure 9 in the SI plots the carbon dioxide content in the atmosphere since
1000 CE. The dramatic acceleration due to anthropogenic forcing since the
1800s is clearly observed.

We calibrate the exponential model (3) and the power law model (6)
separately to two time periods: (i) from 1850 to 1954 (Figure 3), for which
the data originates from ice drill cores and (ii) from 1959 to 2009 (Figure 4),
for which the data originates from air samples. The quality of the fits by the
two models, as quantified by the sum of squared errors between theory and
data, is practically equivalent. Therefore, we cannot reject the hypothesis
that the exponential model is sufficient to explain the data for each time
window separately.

However, the growth rate r calibrated with the exponential model (see
equation (3) has more than doubled from the first period 1850 – 1954 (r =
0.0066) to the second period 1959 – 2009 (r = 0.016). While being not
fully warranted given the heterogeneity of the data sources, we have fitted
the two models to the whole period from 1850 to 2009. We find that the
FTS power law is the clear winner (see Figure 10) which, together with the
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more than doubling of the growth rate r from the first to the second time
intervals, suggests the existence indeed of a faster-than-exponential growth
of the atmospheric content of carbon dioxide.

We now attempt to be more precise on the nature and evolution of the
faster-than-exponential growth by estimating the exponent δ of equations
(6) applied to the time series of carbon dioxide atmospheric content. We use
the monthly data from the Mauna Loa site, as it is considered to be one of
the most reliable. Before calibrating equation (6) to various time intervals
[t1, t2], we smooth the data by using a Gaussian kernel with a width of 10
years. Then, we estimate δ, with t1 being scanned from 1958 to 2006 and t2
being scanned from 1960 to 2009 as shown in Figure 5.

Two main results are obtained. First, the exponent δ is found almost
always larger than or equal to 1, implying a growth at least as fast as expo-
nential and often significantly faster. Second, one can observe a systematic
trend. For time intervals starting earlier (i.e., for t1 in the late 1950s and
in the 1960s), the exponent δ tends to be closer to 1, while for larger t1, δ
is significantly larger than 1. This leads to the conclusion that the carbon
dioxide content in the Earth atmosphere is growing at least exponential and
probably faster-than-exponentially, with no sign of abating. The latest time
intervals are characterized by the largest exponents δ’s, significantly above
the lower bound 0 that would correspond to an exponential growth. The con-
tent of carbon dioxide in the atmosphere is accelerating super-exponentially.

3.3 Compatibility between exponential population growth
and super-exponential CO2 emissions

The previous empirical evidence suggests that the human population on the
Earth is growing now just exponentially, while there is suggestive evidence
that the content of carbon dioxide in the atmosphere is accelerating super-
exponentially. How are these two different behaviors be compatible with the
solutions (13,14) for A(t) and L(t) of equations (11,12)?

We consider two possible explanations. The first one would argue that
until the 1960s both population and atmospheric carbon dioxide content
were super-exponentially accelerating in accordance with expressions (13,14).
Then, the slowing down from super-exponential to just exponential growth
of the human population could be interpreted as a finite-size effect that is
starting to be felt for this variable only, as physical limits are more stringent
for the human carrying capacity and the response of human birth and death
rates to policies than they are for carbon dioxide emissions.

The second explanation is that the two different behaviors of A(t) and
L(t) may be resolved within the mathematical structure developed in equa-
tions (13) and (14). Indeed, let us assume that the growth of the human
population is following solution (14), but with a small value of the exponent
κ. For all practical purpose, a FTS power law with a small exponent is in-
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distinguishable from an exponential growth over a finite time interval. This
interpretation is reasonable in so far that human population growth has
been unambiguously super-exponential until the 1960s, and it is only re-
cently that this growth has somewhat abated. It is thus quite possible that
it is still super-exponential but to a degree that is not sufficiently strong
to be distinguishable from a pure exponential, as shown in the analysis of
Figures 1 and 2.

Let us now turn to the dynamics of CO2 content. The conditions for a
super-exponential growth of the content of carbon dioxide in the atmosphere
are compounded by many complex processes involving, in addition to the
emissions, the sequestrations of CO2 by, and dynamics of, the ocean and
biosphere. As a rough rule of thumb, we assume that the total content of
carbon dioxide in the atmosphere at time t is simply proportional to (but
likely less than) the cumulative release of CO2 until time t. In other words,
CO2 content is estimated as a finite fraction of the solution of equation (17).
Under these assumptions, in order for CO2 content to exhibit a FTS power
law behavior, it is necessary and sufficient that the exponent 1/ϕ in (17)
be larger than 1. Indeed, by integration, CO2(t) remains of the same form
(tc − t)−1/δ, with 1/δ = 1/ϕ− 1 > 0, where δ is defined as in equation (6).
This condition translates into the condition ξ < µ/κ. As we have assumed
that κ is small, corresponding to the closeness of the population dynamics to
an exponential growth, this condition does not provide a strong constraint
for ξ: CO2 content can exhibit an (accelerated) FTS dynamics even if ξ
is large, corresponding to a more efficient economy. If 1 − α is close to 0,
corresponding to output mainly controlled by availability of capital, then
ξ should be small. Small values of ξ correspond to the situation in which,
taken globally over the whole Earth, the technological advances have not
yet significantly abated carbon emission per unit of output. This statement
may appear shocking and counter-factual for developed countries. But, at
the scale of the whole planet, one can observe that improvement in carbon
emissions (i.e., decrease per unit of output) in the developed countries are
counteracted by the increases of carbon emissions in some major develop-
ing countries, such as China, India and Brazil, which use carbon emission
inefficient technologies (for instance heavily based on coal burning). In sum-
mary, we find a very robust FTS behavior for CO2 over a broad and realistic
range of parameters, which makes it difficult to constrain the impact of the
advance of technology on production efficiency.

4 Conclusion

We have analyzed the growth of atmospheric carbon dioxide and of what
constitutes arguably its most important underlying driving variable, namely
human population. Our empirical calibrations suggest that human popula-
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tion has decelerated from its previous super-exponential growth until 1960
to “just” an exponential growth. As for atmospheric CO2 content, we find
that it is at least exponentially increasing and more probably exhibiting an
accelerating growth rate, consistent with a FTS (finite-time singular) power
law regime.

We have proposed a simple framework to think about these dynamics,
based on endogenous economic growth theory. We showed that the positive
feedback loops between several variables, such as population, technology and
capital can give rise to the observed FTS behavior, notwithstanding the fact
that the dynamics of each variable would be stable or at most exponential,
conditional on the stationarity of the other variables. It is the joint growth
of the coupled variables that may give rise to the enormous acceleration
characterized by the FTS behavior, both in the equation and, we present
suggestive evidence, in the carbon dioxide content in the atmosphere.

Overall, the evidence presented here does not augur well for the future.

• The human population is still growing at an exponential rate and there
is no sign in the data that the growth rate is decreasing. Many argue
that economic developments and education of women will lead to a de-
crease growth rate and an eventual stabilization of human population.
This is not yet observed in the population dynamics, when integrated
worldwide. Let us hope that the stabilization of the human popula-
tion will occur endogenously by self-regulation, rather than by more
stringent finite carrying capacity constraints that can be expected to
lead to severe strains on a significant fraction of the population.

• Notwithstanding a lot of discussions, international meetings, preva-
lence in the media, atmospheric CO2 content growth continues un-
abated with a clear faster-than-exponential behavior. On the face of
this evidence using data until 2009, stabilizing atmospheric carbon
dioxide emissions at levels reached in 1990 for instance seems very
ambitious, if not utterly unrealistic. We are not pessimistic. We think
that only evidence-based decision making can lead to progress. The
present evidence gives some measure of the enormous challenges to
control our CO2 emissions to acceptable levels.

5 Data

Population data was obtained from the website of the United Nations (http:
//www.un.org/esa/population/publications/sixbillion/sixbilpart1.

pdf) and the website of U.S. Census Bureau (http://www.census.gov/ipc/
www/idb/worldpop.php).

Carbon dioxide data was collected from different sources: from the Car-
bon Dioxide Information Analysis Center (CDIAC) (http://cdiac.esd.
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ornl.gov/ftp/trends/co2/siple2.013, http://cdiac.ornl.gov/ftp/trends/
co2/lawdome.combined.dat), the National Oceanic and Atmospheric Ad-
ministration (NOAA) (ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_
annmean_mlo.txt, ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/
antarctica/maud/edml-co2-2005.txt, ftp://ftp.cmdl.noaa.gov/ccg/

co2/trends/co2_mm_mlo.txt) and from [1]4.
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A Discussion of exponential growth / FTS power-
law

Depending on the scale of the abscissa and the ordinate, exponential growth
and FTS power-law growth can look very different (see also Figure 6):

• (a): the linear-linear plot shows the dual property of the FTS power
law function, which is to both grow initially slower than the two other
models, and then to catch up explosively.

• (b): in this linear-log plot, by construction, the exponential function is
a straight-line, thus a linear dependence in this representation qualifies
an exponential growth. The linear model is concave (slower growth)
and the power law FTS model is convex (faster growth).

• (c): the log-log plot would qualify a power law tβ as a straight line
whose slope is the exponent β. Hence the linear function is also linear
in this representation with slope 1. Both the exponential and FTS
power law model exhibit an upward convex shape. It is important not
to confuse a power law and a FTS power law: the former is propor-
tional to a power of t and thus exists for all times, while the later is
proportional to a power of tc − t and is only defined for t < tc.

• (d): in this log-log plot in the variable tc − t, by construction, the
FTS power law is qualified by a straight line behavior, with a slope
equal to the exponent −1/δ. Both linear and exponential models are
associated with concave curves, characterizing a slower growth in the
vicinity of tc. Note that time t increases to the left.

B Exact Solution of the ODE system

This appendix provides the exact derivation of the system of equations (11)
and (12), thus justifying the ansatz (13) and (14) used.

First, we combine equations (11) and (12) into a single equation:

dA

dt
L(t)−η−γA(t)−θ − dL

dt
L(t)−1A(t)−1+α = 0 . (18)

Without loss of generality, we can set e = f = 1 by defining appropriately
the units of A and L. Separating the variables and integrating lead to

1

2− α− θ
A(t)2−α−θ − 1

η + γ
L(t)η+γ = c′ . (19)

Looking for the large time asymptotic regime for which L(T ) and A(t)
(which are assumed to be monotonously increasing) become much larger
that the constant c′, we can solve for A(t) and L(t) as follows.
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• Hence,

L(t) =

[
1

2− α− θ
A(t)2−α−θ(η + γ)

]1/(η+γ)
(20)

= c2A(t)
2−α−θ
η+γ . (21)

Plug-in this into equation (11) leads to

dA

dt
= c2A(t)2−α . (22)

By separating variables and subsequent integration, we get:

A(t)α−2dA = c2dt , (23)

1

α− 1
A(t)α−1 = c2t+ c′2 , (24)

A(t) =

[
(1− α)c2(

−c′2
c2
− t)

]−1/(1−α)
(25)

⇔ A(t) = A0(tc − t)−1/µ , (26)

with µ = 1− α.

• Similar, we find the solution for L(t):

A(t) =

[
1

η + γ
L(t)η+γ

]1/(2−α−θ)
(27)

= c3L(t)
η+γ

2−α−θ . (28)

Plug-in this into equation (12) leads to

dL

dt
= c′3L(t)

(η+γ)(1−α)
2−α−θ

+1 (29)

=: c′3L(t)κ+1 where κ :=
(η + γ)(1− α)

2− α− θ
. (30)

As before, we separate variables and integrate

L(t)−κ−1dL = c′3dt , (31)

1

−κ
L(t)−κ = c′3t+ c′′3 , (32)

L(t) =

[
κc′3(
−c′′3
c′3
− t)

]−1/κ
(33)

⇔ L(t) = L0(tc − t)−1/κ , (34)

with κ = η+γ
2−α−θ (1− α).
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Figure 1: Population data represented by the empty circles (where “esti-
mate” refers to the empirical estimation of the population) fitted over the
time window from 1850 – 1965 by the FTS power-law (6) and the expo-
nential model (3). The fitted parameters are δ = 2 and tc = 1988 for the
power-law and r = 0.028 for the exponential fit.

Of course, the solution for L(t) could be directly obtained using (21) and
(26), and reciprocally.

For a general mathematical rigorous theory of ordinary differential equa-
tions exhibiting finite-time singular behaviors, see [9].

C Calculation of the exponent ϕ

Let us give some intermediate steps towards the solution of equation (17).

Y (t)

A(t)ξ
=(7) K(t)α(A(t)L(t))1−α

A(t)ξ
(35)

=(9) L(t)A(t)1−α−ξ (36)

=(13,14) L0(tc − t)−1/κ
[
A0(tc − t)−1/µ

]1−α−ξ
(37)

= L0A0(tc − t)−1/κ−(1−α−ξ)/µ (38)

=! C0(tc − t)−1/ϕ . (39)

Hence,

ϕ =
1

1/κ− ξ/µ+ 1
. (40)
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Figure 2: Population data fitted over the time window from 1970 – 2008 by
the FTS power-law (6) and the exponential model (3). The fitted parameters
are δ = 3.5 and tc = 3939 for the power-law and r = 0.00067 for the
exponential fit.
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Figure 3: Carbon dioxide data fitted over the time window from 1850 –
1954 by the FTS power-law (6) and the exponential model (3). The fitted
parameters are δ = 0.65 and tc = 2304 for the power-law and r = 0.0066
for the exponential fit. The two fits are almost undistinguishable and their
goodness-of-fit is essentially the same.
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Figure 4: Carbon dioxide data fitted over the time window from 1959 –
2009 by the FTS power-law (6) and the exponential model (3). The fitted
parameters are δ = 0.73 and tc = 2132 for the power-law and r = 0.016
for the exponential fit. The two fits are almost undistinguishable and their
goodness-of-fit is essentially the same.
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Figure 5: Estimates of the exponent δ of equation (6) on the monthly Mauna
Loa carbon dioxide data obtained from air measurements in different inter-
vals [t1, t2]. Each line corresponds to a specific start time t1, as shown in
the legend. The ending point t2 is the variable on the abscissa.
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Figure 6: Illustration of the qualitatively different behaviors of the expo-
nential model (3), the power law model (5) and a linear model, in different
standard plot representations. For each of the four plots, the linear function
0.5t+ 3.25 is compared with the exponential function 1e0.5t + 2.5 and with
the power law 1(2.2− t)−0.5 + 2.5. (a) is linear-linear, (b) is linear-log, (c) is
log-log and (d) is log-log referenced to the singularity. The constant c is set
equal 2.5. The relative vertical positions of the three curves are arbitrarily
chosen (from the above values) for the sake of a clear visualization.
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Figure 8: Numerical solution of equations (11) and (12) with α = 1
4 , η+γ =

1, θ = 1 and tc = 10. The initial conditions are A(0) = 1.1 and L(0) = 0.8.
We assume without loss of generality e = f = 1, as these coefficients can be
absorbed in the units of A and L respectively. L(t) and A(t) grow super-
exponentially towards a singularity occurring at the same time as a result
of their coupling. The logarithms of A(t) and L(t) are plotted as a function
of (linear time). The upward curvatures and approaches to the singular
vertical asymptote exemplify the super-exponential growth.
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Figure 9: Atmospheric carbon dioxide since 1000 CE to present. The data
shown combines ice core and air measurements from different sources. See
data section for more details.
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Figure 10: Carbon dioxide data fitted over the time window from 1850 –
2009 by the FTS power-law (6) and the exponential model (3). The fitted
parameters are δ = 0.33 and tc = 2129 for the power-law and r = 0.024 for
the exponential fit. The ratio of squared errors between the power-law and
the exponential-fit is 0.88.
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