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Abstract 

 

Over recent decades there has been a considerable rise in US income inequality as measured by 
official statistics. The measures of inequality typically used are based on price indexes for a 
representative US consumer. The representative consumer assumption is not crucial in a world 
with a stationary relative price distribution or with an identical basket of goods consumed by 
different income groups. However, using household data on non-durable consumption between 
1994 and 2005, we document that the relative prices of low-quality products that are consumed 
disproportionately by low-income consumers were falling over this period. This means that 
much of the rise of measured income inequality has been offset by a relative decline in the prices 
of products that poorer consumers buy. By relaxing the standard assumptions underlying the 
representative agent framework we find that non-durable inflation for consumers in the 10th 
percentile of the income distribution has been 7.3 percent lower than inflation for the 90th 
percentile over this period (or 0.6% per annum). This implies that around half of the increase in 
conventional inequality measures during 1994 – 2005 is the result of using the same price index 
for non-durable goods across different income groups. Moreover, we provide evidence that the 
pattern of rising price dispersion is not confined to our sample of non-durable goods or to the 
recent period, and thus the overstatement of “real” inequality in official statistics is likely to be 
larger.     
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I. Introduction 

According to the US Census, inequality has risen substantially over the last few decades. 

Real income for the poorest decile of the income distribution grew by just 13 percent from 1973 

to 2006, or less than 0.4 percent per annum (Figure 1) 1. High-income households have fared 

somewhat better, with real household income at the 90th percentile rising by 41 percent in this 

period or 1.0 percent annually. These facts have led to an active area of inquiry into how the 

fruits of economic progress are distributed (see Goldin and Katz (2007) for a recent survey). But 

while the rise in US inequality has become “conventional wisdom”, little attention has been paid 

to the fact that the standard measures of inequality assume that all American consumers buy the 

exact same basket of goods and face identical prices. In this paper we focus on the fact that 

“real” income or welfare does not only depend on the dollars in consumers’ pay checks, it also 

crucially depends on what consumers can buy with those dollars. We relax the standard 

assumption of a representative agent underlying the calculation of conventional price indexes 

and re-examine the evidence on US real income growth and inequality.  

Using scanner data on household consumption of non-durable goods between 1994 and 

2005, we document that the relative prices of low-quality products that are consumed 

disproportionately by low-income households were falling over this period. This implies that 

non-durable inflation for the 10th percentile of the income distribution has only been 4.3 percent 

between 1994 and 2005 (0.4 percent per annum), while the non-durable inflation for the 90th 

percentile has been 11.9 percent (1.0 percent annually), and 13.4 percent (1.2 percent annually) 

for the richest 5 percent of households in the sample. Over the period 1994 – 2005, the 

conventionally measured ratio between real household income at the 90th and 10th percentile rose 

by 5.7 percent (0.5 percent per annum) and the 95th/10th ratio rose by 7.5 percent (0.7 percent per 

annum). This suggests that the inflation differential in non-durable goods (around 30 percent of 

total consumption) is enough to offset almost 40 percent of the rise in both of these inequality 

ratios over this period. In the case of other common inequality measures, the 80/20th and 95/20th 

income ratios, the non-durable inflation differential is enough to offset over 80 percent and 50 

percent, respectively, of the rise in these indicators. Moreover, we provide evidence that suggests 

that the increase in price dispersion is not limited to the products in our sample nor to our time 

                                                            
1 Census Bureau: Selected Measures of Household Income Dispersion: 1967-2007. 
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period. If differences in income-group specific inflation rates in our sample are representative of 

the broader economy, then real income growth in the US has been much more substantial and 

equal than suggested by standard measures. In that case, “real” inequality may have actually 

fallen between 1994 and 2005.  

Figure 2 illustrates the importance of understanding the impact that changing relative 

prices have on the mapping between real income and welfare. For simplicity assume that 

consumers choose between goods X or Y, and that the non-homothetic utility function is 

represented by indifference curves IC1, IC2 and IC3. These indifference curves get steeper as 

you move out from the origin, with the natural interpretation that good X is a higher quality 

good. At initial relative prices Px/Py rich households prefer to consume good X (point H1 on IC3 

in the figure) and the poor prefer to consume good Y (point L1 on IC1 in the figure). Under these 

initial conditions, a fall in the price of good Y (the good consumed by the poor) to Py’, as 

depicted by the dotted budget constraints, increases the income of both rich and poor (in terms of 

good Y), but only raises the welfare of the poor. After the change in prices, the poor settle at L2 

in the figure on a higher indifference curve IC2, while it is optimal for the rich to remain at point 

H1. We believe this figure captures the essence of our empirical findings, where relative price 

changes that favor the poor increases their relative welfare without being captured by official 

statistics.  

As suggested by Figure 2, the reason behind the fall in the gap of “real” income or 

welfare between rich and poor is a fall in the relative price of goods consumed by the poor. 

Conceptually this change in relative prices can arise either because the price of “existing” goods 

(i.e., goods consumed throughout the entire period) has changed, or because of the introduction 

of new goods that are not consumed by all households. We show that the introduction of new 

goods over this period has benefitted each group substantially but relatively equally. If we define 

new goods as any product that was not consumed in 1994 but was consumed by at least one 

household in 2005, then the rich have benefitted slightly more by the introduction of new goods, 

as prices have fallen 1.4 percent (0.1 per annum) more than for the poor due to new goods. The 

results are similar when we define new goods specifically to the geographic area in which 

households shop, implicitly acknowledging that there is geographical segmentation in retail 

markets (this calculation can currently only be performed for the food sample). Overall, this 

suggests our results are driven primarily by the change in relative prices of existing goods.  
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While most of the existing studies on the evolution and distribution of the economic 

growth have focused on “income” rather than “price” measurement, several papers have 

highlighted the importance of correctly measuring prices. Two recent studies have assessed the 

impact of immigration on prices (Lach (2007) and Cortes (2008)). Cortes (2008) quantifies the 

downward pressure on immigrant-intensive services of an increase in the share of low-skilled 

immigrants in the labor force, and emphasize the importance of taking into account the “price” 

effect when assessing the impact of immigration on the native population. The BLS has a 

tradition of computing group-specific inflation series (e.g., Garner et al (1996) and Cage et al 

(2002), and similarly Hobjin and Lagakos (2005)). But the shortcoming of these studies is that 

they do not use pricing data specific to each income group, but rather allow the shares of 

expenditures in different product categories to vary by income group. As we show in the main 

text, almost all of the results in our paper come from within-product category changes in prices 

(Maxwell vs Illy coffee), rather than the relative price changes between product groups (coffee 

vs soda), and so are missed by papers that use coarser price data. A recent study by Moretti 

(2009) suggests that college graduates have experienced relatively larger increases in the cost-of-

living because they have concentrated in metropolitan areas characterized by a rising housing 

costs.   

 

II. Data Description 

II. A. Overview 

The paper uses detailed household consumption data on a large set of mostly non-durable 

products sold in grocery, drug, mass merchandise, and other stores. The data is part of the 

Homescan database, collected by ACNielsen in the United States, that records prices and 

quantities of the purchases of thousands of households. ACNielsen provides Universal Product 

Code (UPC or barcode) scanners to a demographically representative sample of households. 

Households then scan in every purchase they make. We use two extracts of the complete 

Homescan database that provides us with a vast array of goods with barcodes. Moreover, we 

have detailed information on the characteristics of the households making the purchases.  

We refer to the first extract of the Homescan data as our “Non-Durable” database. For 

this extract we have price and quantity data for every UPC purchased by a sample of 41,500 

households for every quarter in 1994, and 55,000 households every quarter between 1999:Q1 
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and 2003:Q4. In addition, we have household-level information on every UPC purchase of a 

sample of 3500 households in 2003:Q4, together with detailed household characteristics. Table 

1A summarizes this database in terms of the number of households, number of UPCs and 

“modules” (ACNielsen’s classification of different UPCs into broader product categories). 

Examples of non-food modules included in this database include “cosmetics”, “toys and sporting 

goods”, “houseware appliances”, “cookware”,  and “wrapping materials and bags”.  

The second extract we use includes detailed information on the food purchases and 

demographic characteristics of a large subsample of households included in the Homescan 

database between 1998 and 2005. We refer to this extract as the “Food” database. In this extract, 

we have household level data on every purchase in all food modules. Examples of food modules 

are “soft drinks non-carbonated”, “sugar, sweeteners”, “seafood” and “prepared, ready to eat 

food”. Table 1B provides summary statistics of the number of UPCs, modules and households 

included in this database.  The data is divided into four broad categories: dairy, dry grocery, 

frozen and processed foods, and random weight products. We obtained detailed household 

information on approximately 8,000 households from 1998 to 2003, and around 38,000 for 2004 

and 2005. In 2005 this extract includes 640 modules and over 380,000 UPCs, most of which are 

classified under the dry grocery category. As we explain in the next section, we combine the 

information from both Homescan extracts to compute income-specific price indices over time. 

A number of characteristics of the household are included in this database. In particular, 

household income, the head of household’s occupation and education level, and household size 

are included. The distribution of households by income group and household head education 

level are provided in Figures 3A and 3B. Since we rely heavily on the information of households 

that are among the poorest and richest in our data, it is useful to examine how well our data 

represents the true population. According to the US Census Bureau the cutoffs for the 10th and 

20th percentile income distribution are approximately $12,000 and $20,000, respectively.2 

Around 8 percent of our sample of households falls below the $15,000 threshold, and around 14 

percent of the households have income less than $20,000. The cutoff for the 80th percentile is 

approximately $97,000. Around 10 percent of our sample has income over $100,000. This 

                                                            
2 U.S. Census Bureau, Current Population Survey, 1968 to 2007 Annual Social and Economic Supplements 
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implies that in 2005 we have detailed data on over 5,000 households that are in the lowest deciles 

of the income distribution and almost 4,000 households in the upper deciles.3,4 

 These data are ideal for understanding how prices evolve for households in different 

income groups. First, they include a long time series of price and quantity data for a large sample 

of non-durable consumption goods consumed by each income group. This is an advantage 

relative to current studies that do not observe the specific prices that households pay for each 

item. Our data circumvents these limitations by using data directly collected by a representative 

set of households.  Second, we can identify the different goods purchased by each income group 

down to the barcode level. While official statistics are based on the basket of a representative 

agent, these data allow us to measure the differences in consumption baskets across income 

groups. This information is not observed by the BLS or other statistical agencies. A third crucial 

characteristic of these data is that along with prices of each product, quantities of the identical 

products are collected at the same frequency. Therefore we observe expenditure weights by 

income group. In short, the data is ideal to examine income-group specific price indexes. 

 

II. B. Stylized Facts on Consumption Baskets by Income Group 

 In this section we use Homescan data to document three key facts that highlight the 

differences in the pattern of consumption across different income groups. First, the basket of 

non-durable goods consumed differs systematically by income group – the poor consume lower 

quality products than the rich. Second, the poor consume fewer varieties of goods (fewer UPCs), 

and this gap with the rich has been widening for food items over the sample period. Finally, the 

poor spend relatively more on food versus other non-food bar-coded products. 

 The Homescan data reveals that poorer households consume goods with lower unit-

values, that are typically associated with lower quality products. A useful feature of the 

ACNielsen Food data is that in addition to the price and quantity of each UPC consumed, it 

provides detailed information on the weight or volume of each product. This allows us to 

compute unit values for each module – size pair. For instance, within the module “Milk”, there 

are UPCs sold under many different sizes (e.g., 16 oz, 32 oz and 64 oz). A single-person 
                                                            
3 The U.S. Census Bureau selects a sample of approximately 7,100 households to build the CEX survey. 
4 While we have little information on response rates by different income groups, Nevo et al (2008) suggest that the 
coverage is good for all income groups, while response rates and measurement error is larger for higher income 
groups. We take some comfort in that we observe purchases for a large number of households in the upper decile of 
the income distribution. 
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household with income over $100,000 pays 32 percent more per oz of milk than a family of four 

earning $25,000 - $30,000. In particular, richer households consume a much higher fraction of 

organic milk. Figure 4A reports this result for all food products. For each module – unit of size 

pair (e.g., Milk – measured in ounces), we calculate the average unit value (price per ounce) paid 

by each group relative to the average unit value for this module – unit of size pair. More formally 

we compute :  

(1)   , , ,
, , ,

,
_ ln m s I j

m s I j
m s

uvrel uv
uv

=   

where , , ,m s I juv  is the mean unit value for purchases in module ‘m’ of products measured in size 

units ‘s’ by households in income group ‘I’ with ‘j’ occupants, and ,m suv  is the average unit 

price paid by all households for products in module m with size units s. Figure 4A shows that the 

milk example is not atypical. Small households with large income routinely pay 30 percent more 

per unit than larger households with smaller incomes. Since the poor are only paying 5 percent 

less for the exact same UPC (Figure 4B), most of the lower average price for the poor therefore 

comes from selecting cheaper brands and, to a lesser extent, more economical sizes. 

 The raw price facts suggest that we can do better than categorizing households by income 

alone. Conditional on household income, a larger household is poorer. Henceforth we will 

categorize households by a per-capita measure: annualized sampled expenditures per capita. 

Since we know the exact purchase date of each item we can observe for how much of each year 

each household has been in the sample (overwhelmingly for the whole year), so we know the 

rate at which households are spending on products with UPCs. For each household, we use their 

entire sample history to sort them by expenditure-per-capita, a proxy for permanent income. 

Each household is given only one ranking for its entire duration in the sample. Due to the current 

lack of overlap in the samples, this is done separately for the Food sample and for the Non-

Durable sample.  

 A second fact revealed by the Homescan data is that poorer households consume fewer 

food products than richer households, and this gap has been growing. We compute the number of 

unique UPC’s purchased per household based on our food sample. We then calculate the average 

number of unique UPC’s purchased per household by expenditure quintile (using only the 

"original" sample and not the larger household sample in 2004-2005). Figure 5A shows the 

number of UPCs per household by quintile. The lowest quintile has reduced the number of UPCs 
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they purchase relative to the richest households by an average of 20 percent. Moreover, while the 

expenditure per capita and the number of total UPCs in the sample has been growing over this 

period, both rich and poor households have reduced the number of varieties they consume. This 

suggests that the amount of overlap across households in the varieties that are consumed has 

been falling over this period.  

 Data limitations prevent us from computing the number of goods for non-food items by 

household over time. However, we can use the single quarter of household data to show the 

propensity of new goods to appear in the expenditures of each income group. The results 

presented in Figure 5B suggest that new non-food goods show up disproportionately in the 

expenditures of poorer households. Almost 70 percent of non-food expenditures by the poor in 

2003 were on products that did not exist in 1994. For the top quintile, this proportion is under 50 

percent. Many such new goods are simply inexpensive items sold in mass-merchandise stores. It 

is therefore likely that new goods from the non-food sample are relatively more beneficial for the 

poor than in the food sample.5 

 Finally, we document that the share of food consumption differs markedly across income 

groups. Using the household-level data in the Non-Durable database, we find that food modules 

account for 73 percent of expenditures for poorer households, but only 57 percent of 

expenditures for richer households (Figure 6). This highlights the differences that exist in the 

basket of goods consumed across income groups. These differences are also reflected in the 

products sold in different stores. For instance, in 2005 our Food database contains 61,119 food 

UPCs that were sold in either a Walmart or a Wholefoods (excluding random-weight products). 

Of these UPCs, 53,715 were sold in Walmart and 8,742 were sold in Wholefoods, with an 

overlap of just 1,338 UPCs sold in both stores. Just 15.3 percent of the UPCs in Wholefoods can 

be found in Walmart, while just 2.5 percent of Walmart UPCs can be found in Wholefoods.  

 

III. Calculating Inflation Rates by Income Groups 

In this section we derive exact price indexes by income group. This differs from 

conventional or official CPI measures that are based on a representative household in the 

                                                            
5 In the fall 2009, we will update this calculation with a dataset that will allow us to compute the average number of 
UPCs per households over time for non-food items as well.  
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economy.6 We build income-group specific price indexes by relaxing two standard assumptions 

underlying conventional price indexes. First, we allow the expenditure shares on each good 

consumed to differ between poor and rich. Second, we allow the introduction of new goods to 

affect the calculation of the cost-of-living index, and we permit the effect to differ across income 

groups. We adopt a nonparametric approach. We essentially allow for an underlying non-

homothetic preference structure, but then approximate this structure with a series of non-

symmetrical CES utility functions. Consumers may simply be on different points of the same 

Engel curve. Since we do not focus on understanding the reasons behind the differences in 

consumption behavior across income groups it is simplest to build consumer price indexes based 

on utility functions where the expenditure shares vary exogenously across income groups.7    

We now write down these restrictions formally. The first step towards deriving an exact 

price index is defining a utility function over all goods in our sample. Suppose that the 

preferences of a particular household with income I can be represented by a two-level utility 

function: 

 (2)   1I I
It It ItF NFα α−Ω =  

where ItF is the sub-utility derived from the consumption of food products and NFIt is the sub-

utility derived from non-food items in our sample. The Cobb-Douglas assumption between the 

aggregate food good and the aggregate of other goods is due to the current structure of our 

sample. We exploit the work of Sato (1976) and Vartia (1976) on ideal price indexes to simply 

assume that both FIt and NFIt  are multi-level CES functions. Define UFt as the set of all possible 

food UPCs in period t. For future reference, each group I may consume a different set of UPCs, 

i.e. FIt FtU U⊂ , and the set of UPCs consumed in both periods t and t-1 by group I is given by 

1FI F Ft FtU U U U −⊂ = ∩  where FU is the set of all common UPCs between periods. Non-food 

UPCs in UNF are similarly arranged.  

If the set of UPCs available for each group is fixed over time, Sato (1976) and Vartia 

(1976) have derived the exact price index in the case of any multi-level CES utility function. In 
                                                            
6 Statistical offices around the world compute changes in consumer prices for an “average” person in the economy. 
In the US, the BLS conducts “Point of Purchase Surveys” to assess where people are buying their products. These 
surveys use demographic and socioeconomic information that allows BLS to monitor how well the selected 
interviewers represent the overall population. 
7 Of course an alternative way to proceed is to have the same utility function across income groups, but allowing for 
non-homothetic preferences, but this may result in significant loss of flexibility in capturing consumer preferences.  
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the case where expenditure shares of particular UPCs are allowed to vary by income group I, the 

“common goods” exact price index is defined as follows, 

(3)     
1

uFIt

FI

w

uFIt
FI

u U uFIt

p
p

π
∈ −

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∏  

This is the geometric mean of the price changes of individual UPCs u that belong to the set FIU , 

where the weights are ideal log-change weights.8 These weights are computed using expenditure 

shares of each income group, uFIs , in the two periods, as follows: 

(4)       

FI

uFIt uFIt
uFIt

uFIt uFIt
u U

p cs
p c

∈

=
∑

 

(5)    
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−

−

−
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−
−

=
⎛ ⎞−
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∑
   

where c denotes consumption quantity. The numerator of (5) is the difference in shares over time 

divided by the difference in logarithmic shares over time. The weights w capture all we need to 

know about how consumers in group I value each UPC and how prepared they are to substitute it 

for other products. Consider what happens in response to a price rise for UPC u. If consumers are 

very prepared to substitute other products for u, then the expenditure share on u will decline 

substantially and the weight function in (5) gives a weight much closer to the lower expenditure 

share, assuming that the denominator in (5) is close to 1. Products that are highly substitutable 

for other products can receive a much lower weight than their average expenditure share. For 

products where the expenditure shares barely move in response to a price change, the weight is 

very close to the simple average expenditure share. We will show that this index in practice gives 

nearly identical results to the much better known Fisher ideal index. The flexibility of its 

structure allows us to account for the different first-order impacts of price changes on the welfare 

of different income groups owing to different expenditure shares, together with different second-
                                                            
8 As explained in Sato (1976), a price index P that is dual to a quantum index, Q, in the sense that PQ = E and 
shares an identical weighting formula with Q is defined as “ideal”. Fischer (1922) was the first to use the term ideal 
to characterize a price index. He noted that the geometric mean of the Paasche and Laspayres indices is ideal. 
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order impacts coming from different willingness to substitute across varieties. These second-

order effects turn out to be very important. 

 The introduction of new goods implies that a true cost-of-living index will differ from the 

common-goods exact price index defined in (3). Feenstra (1994) showed how to modify this 

common-goods exact price index for the case of different, but overlapping, sets of varieties in the 

two periods. Suppose that there is a set of UPCs FIU ≠∅  that are available in both periods, and 

for which the taste parameters are constant. Extending the work of Feenstra (2004) we can derive 

different cost-of-living indexes by income group from the utility structure allowing for product 

creation and destruction:  

(6) 

1
1

1

F
c
FIt

FI FI c
FIt

sCOLI
s

σ
π

−

−

⎛ ⎞
= ×⎜ ⎟

⎝ ⎠
, 

where ,
FI

FIt

uFIt uFIt
u Uc

FI t
uFIt uFIt

u U

p c
s

p c
∈

∈

=
∑
∑

. 

FICOLI  is the cost-of-living index (or exact price index) for food for group I adjusted for new-

goods bias between periods t and t – 1, and ,
c
FI ts  is the share of common UPCs in food consumed 

by group I to the total food consumption of group I. We define NFICOLI  for non-food items 

similarly. 

Given the Cobb-Douglas aggregator between food and non-food items the “common” 

goods aggregate exact price index for all items in our sample is:   

(7)   1I I
I FI NFI

α απ π π −=  

where the weights Iα  are the simple expenditure shares in Figure 5C. Explicitly allowing for  

product turnover, we obtain the following expression for the relationship between the 

conventional inflation measures and changes in the cost-of-living index: 

(8) 

1
1 1

1

1 1

I I

F NF
I I

c c
FIt NFIt

I FI NFI c c
FIt NFIt

s sCOLI
s s

α α
σ σ

α απ π

−
− −

−

− −

⎛ ⎞ ⎛ ⎞
= × × ×⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
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 Overall inflation adjusted for new-goods bias is comprised of two different components: 1) 
1I I

FI NFI
α απ π −×  is the “common-goods” exact price index for group I for non-durable goods; and 2) 

1
1 1

1 1

I I

F NF
c c
FIt NFIt

c c
FIt NFIt

s s
s s

α α
σ σ

−
− −

− −

⎛ ⎞ ⎛ ⎞
×⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 captures the role that product turnover, or new goods bias, plays for 

each group. 

The geometric average of , , 1/c c
FI t FI ts s −  ratios captures the difference (or bias) between a 

true cost-of-living index relative to the common-good price indexes like the CPI.  Mechanically, 

when the share of new UPCs consumed by group I in period t is larger than the share of UPCs 

that have disappeared from group I’s basket in period t –1, this ,
c
FI ts  ratio is smaller than 1. The 

smaller is this share ratio, the smaller is the overall inflation rate that takes product turnover into 

account relative to a conventional (common-goods) price index that does not.  

The inflation rate in (8) also depends on the elasticities of substitution Fσ  and NFσ . For 

instance, as Fσ  grows, the term 
1

1Fσ −
 approaches zero, and the bias term 

1

1

I

F
c
FIt

c
FIt

s
s

α
σ −

−

⎛ ⎞
⎜ ⎟
⎝ ⎠

 becomes 

unity. When existing varieties are close substitutes to new or disappearing varieties, changes in 

varieties will not have a large effect on the difference between Iπ  and ICOLI . By contrast, when 

Fσ  is small, varieties are not close substitutes, 
1

1Fσ −
 is high, and therefore new varieties are 

very valuable and disappearing varieties are very costly. In this case, the conventional price 

index is a biased measure of the true cost of living index. 

We can now formally see in (8) the two main assumptions that we relaxed relative to 

standard official measures of inflation. The first difference with a standard representative agent 

setup is that the inflation of common goods over time, Iπ , has weights that depend on the group 

I. Second, the last two terms in (8) allow for new and disappearing products to impact income 

groups differently. 

  

IV.  Inflation Rates by Income Groups, 1994 – 2005 
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(i) Food 1994-2005 

We use the Food database to compute the common-goods food inflation rate, πFI (the first 

term in equation (8)), by income percentile for 1994 to 2005. For 1998 – 2005 we use precisely 

the methodology detailed in Section III. Prior to 1998 the lack of household detail prevents us 

from implementing the Sato (1976) and Vartia (1976) ideal weights for the common-goods price 

index, so instead we use simple expenditure shares by quintile in 1998 to construct a Paasche 

index for prices changes between 1994 and 1998. The first three columns of Table 2A report πFI, 

the food inflation rate for common goods by income group. For 1994-2005, πFI  ranged from 8.7 

percent for the 10th percentile to 17.2 percent for the 90th percentile and 18.3 percent for the top 5 

percent of households. Overall, the prices of common food items have been rising considerably 

faster for the rich than for the poor.  

We report the results for common food goods more flexibly in Figure 7. The inflation rate 

for percentile P is calculated by grouping households between percentiles P-5 to P+5. At the 

upper part of the distribution we have to modify this slightly, so that by the 99th percentile we 

are simply looking at the top 2 percent of households. The food inflation rate for common-goods 

between 1994-2005 increases steadily through the income distribution, from just 8 percent at the 

bottom of the distribution to 22 percent near the top (99th percentile). In particular, the inflation 

differential in common-goods for food items between the 90th and 10th percentile of the income 

distribution was 8.5 percentage points during the 1994 – 2005 period.  

 We also calculate the new goods bias (the third term in equation (8)) for 1998-2005 from 

the Food database using the median substitution elasticity of 11.5 estimated by Broda and 

Weinstein (2009) for σF and σNF. The results are reported in column 5 of Table 2A, and range 

from -2.9 percent for the 10th percentile to -3.9 percent for the 90th percentile. New goods are 

therefore contributing substantially to the well-being of all groups, by 0.5 percent annually on 

average. The results are almost unchanged with a definition of new goods based on the 

geographic area where households purchases are made.9 The lack of household detail prior to 

1998 prevents us from calculating the new goods bias by group for 1994-1998. However, we 

                                                            
9 We also calculated the bias based on a measure of new goods that more carefully captures the notion of 
geographical market segmentation (where new goods are restricted to the metropolitan area where households live, 
or the interaction of store-id and metropolitan area). In this case we restricted the sample to a fixed number of 
households throughout the period to prevent any sampling concerns. The bias based on a definition of new goods 
that is restricted to a particular geographical area is almost identical to that based on the market as a whole. 
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find that the new goods bias for all consumers for 1994-1999 calculated using food modules in 

the aggregate Non-Durable database follows roughly the same annual rate as 1998-2005, at -0.6 

percent per annum. For the purpose of our combined inflation rate calculations we extrapolate 

the 1998-2005 bias for each percentile back to 1994. Our new goods bias estimates for food 

appear in columns 4 to 6 of Table 2A. 

 Combining the common-goods inflation and new-good bias estimates for food items 

yields the overall change in the food cost-of-living index between 1994-2005, which ranges from 

3.7 percent for the 10th percentile to 10.2 percent for the 90th percentile, and 11.1 percent for the 

top 5 percent of households. The solid line in Figure 7A reports the changes of the cost-of-living 

index for food items. Overall, the difference in the changes of the food cost-of-living indexes 

between the 90th and 10th percentile of the income distribution was 6.5 percentage points during 

the 1994 – 2005 period.  

 

(ii) Non-food 1994-2003 

 We use the Non-Durable database to compute the non-food inflation rate, NFIπ  (the 

second term in equation (8)), by group I for 1994-2003. Since we only have one quarter of 

household-level data for nonfood items (3500 households in 2003Q4) we employ simple 

expenditure weights by percentile in 2003 to calculate a Paasche price index for non-food 

common goods for 1994-2003. Table 2B shows that non-food common goods inflation varies 

from 11.7 percent for the 10th percentile to 18.7 percent for the 90th percentile and 20.5 percent 

for the top 5 percent of households in our sample. For ease in comparisons with the food sample, 

we simply extrapolate these results for 2004 and 2005 in column 2 of Table 2B. We show below 

how results are qualitatively unchanged if we used the shorter comparison period.  

 The lack of a second year of household data for non-food items prevents us from 

completing calculations of the new goods bias by income group (the fourth term in equation (8)), 

but we can still calculate the aggregate bias. For 1994 to 2003 the "aggregate" data for nonfood 

items shows the average new goods bias to be -6.3 percent, or -0.7 percent annually. Given the 

limitations of our dataset, we simply set the bias for each group equal to the average bias and 

extend the results to the years 2004 and 2005 for comparison purposes only.10 In Table 2C we 

                                                            
10 Access to the complete household database from 1994 onwards will enable us to compute CES cost-of-living for 
non-food items as we currently do for food products.  
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also present results just for 1994-2003 where we have simply dropped the last two years of food 

data to align that sample with the shorter non-food sample, and the same picture emerges. 

 We again present the results more flexibly in Figure 7B. The estimated non-food inflation 

rate is more volatile for two reasons. The main reason is the smaller amount of expenditures in 

the household-level nonfood sample – our weights are derived from just 3 months of 

expenditures for 3500 households. The second reason for volatility is that non-food purchases 

can be more lumpy, which contributes to sample variance. Yet the pattern in the data seems 

clear: the inflation rate is higher for higher-income households. It averages about 5 percent at the 

bottom of the sample, 10 percent in the middle and 15 percent for households that spend the 

most. 

 

(iii) Combined Cost of Living Index (COLII) 

 We use our disaggregated household expenditure data for 3500 households in 2003 to 

construct weights on both food and non-food items by income group (αI, 1 - αI) which are 

necessary to calculate the cost of living index for all items using equations (7) and (8). We use 

this sample to construct weights on the share of food versus non-food items across expenditure 

groups (Figure 5C and the last column of Table 2C). Not surprisingly, poorer households spend 

proportionally more on food (70.8 percent) than do richer households (49.6 percent).  

The COLI results for 1994-2005 are reported in Table 2C and Figure 7C. For the 10th 

percentile, the cost-of-living inflation was just 4.3 percent, while for the 90th percentile it was 

11.9 percent, and 13.5 percent for the 95th percentile of households in our sample. If we focus on 

the 1994-2003 data to eliminate the small but crude extrapolations for non-food items, the story 

is much the same. Inflation for 1994-2003 was 3.4 percent for the 10th percentile, 10.0 percent 

for the 90th percentile and 11.4 percent for the 95th percentile (Table 2C, 6th column). Inflation 

for rich households is rising roughly 0.7 per cent per annum faster than for poor households. 

The implications of this for long-term income growth and inequality measures are 

potentially profound. Table 3 compares the differences in COLI for different income groups to 

the changes in common measures of income inequality over the same period. The extent of the 

offsetting effect that the COLI differentials have on standard inequality measures depends on 

how extensively the basic fact uncovered in our sample applies to expenditures outside of those 

on non-durable goods. Assuming that our findings are only applicable to non-durable goods 
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(30.4 percent of household expenditure), then around half of the increase in conventionally 

measured inequality during 1994 – 2005 is the result of using the same price index for non-

durable goods across different income groups. The share varies from 87 percent for the 80th/20th 

income ratio to 36 percent for the 90th/10th ratio. That is, using income specific non-durable 

inflation rates the 80th/20th ratio rises 0.3 percent over this period (instead of the official 2.1 

percent), while the 90/10th measure rose 3.5 percent (rather than the official 5.7 percent). 

Table 3 also shows the implications on inequality measures if durable goods and service 

sectors also exhibited similar increases in price dispersion as that observed for non-durable 

goods over this period. In this case using income specific inflation rates the 80th/20th ratio falls 

during the 1994 – 2005 period by 4.0 percent (instead of rising by 2.1 percent as in the official 

measurement), while the 90/10th measure falls by 1.6 percent (rather than the official rise of 5.7 

percent). In the next section we present evidence that suggest that our results may not only 

extend beyond our sample of goods but also beyond the time period being studied. 

Income-specific inflation measures suggest that the fruits of economic progress may have 

been much more evenly distributed than we currently believe. The reason for these results is 

deep yet simple – changes in the price distribution are causing the mapping from (log) nominal 

income to welfare to become flatter (as in Figure 2). Imagine that in 1994 the mapping between 

permanent income and welfare is given by ln W = ln Y. Using census data on household income 

as our proxy for the distribution of income, the relationship between income and welfare in 1994 

is depicted by the dashed line in Figure 8. The solid line depicts the same relationship in 2005. 

The dispersion of household income has increased, but the same is not true for welfare as relative 

price have changed in favor of goods purchased by poor households (in terms of the graph, the 

2005 line is flatter than the 1994 line). We believe that this has implications for how we should 

interpret most existing studies of inequality, which focus on the horizontal axis (income 

distribution) rather than on the vertical axis (welfare distribution). 

 

V. What Drives Our Results and Why They Extend Beyond Our Sample 

We show that rising price dispersion within narrowly defined products has been an 

unmistakable pattern of the data, and that it is likely behind the rapid rise in prices for rich 

relative to poor consumers for two reasons. Firstly, poor households consume a disproportionate 

amount of "primary" qualities of the good (for example, a glass that may cost $1 at the local 
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mass-merchandise store) and relatively less on the "secondary" qualities of the good 

(characteristics we intuitively think of as "quality", such as a hand-made Riedel Sommelier 24% 

lead crystal Bordeaux glass that may cost $80) which have increased most in price. Second, 

poorer households may be more willing to substitute away from products with rapidly rising 

prices. Thus, the "substitution bias" may be higher for poorer households. In this section, we 

document the fact that price dispersion has been rising in our sample, its consequences for price 

measurement, and examine how these patterns are not specific to our sample or time period. 

Rising price dispersion is apparent in both our food sample and our non-food sample. To 

describe this pattern, we calculate the unit value for each UPC, e.g., the price of an ounce of 

milk. For each module - quantity-unit pair (such as Milk, measured in ounces), we rank 

purchases by unit value. We then calculate percentiles of the distribution of unit prices for each 

module - quantity-unit pair. The p-th percentile is the price where p-percent of the goods by 

value (not by quantity) sell at or beneath that price. The use of value rather than quantity to 

define the percentiles is to reduce problems associated with measurement error in quantities in an 

international trade database we use below. Figure 9A shows the unit price of food items at the 

50th percentile has been rising relative to the 10th percentile, and that prices at the 90th 

percentile have been rising relative to the 50th. Figure 9B shows rising price dispersion for non-

food products in our sample. 

How can this increased price dispersion affect inflation differentials by income group? 

The fact that in most categories the poor systematically choose lower unit-value items (as we 

described in section II), suggests that they place a relatively low importance on secondary 

qualities of a product, so that poorer households keep substituting towards inexpensive varieties. 

These differences may also be driving the differences in shopping trends between rich and poor. 

The rising price dispersion is particularly apparent between stores that cater to consumers of 

different income levels. For a similarly-defined food product (an ounce of milk, for example), 

the unit prices at Walmart were 53 percent less than at Wholefoods in 2005. And, not 

surprisingly, the share of expenditures of the poor relative to the rich has risen sharply for 

purchases in Walmart relative to Wholefoods. Figures 10A and B show the evolution of the share 

of expenditures from shopping at Walmart and Wholefoods by different income groups. The 

patterns suggest a sharp rise in the expenditures in Walmart by the poor and in Wholefoods by 

the rich over the period studied.  
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Moreover, poorer consumers also appear more willing to substitute across varieties than 

richer consumers. When the price of one item goes up, the poor are more likely to shift 

expenditures to another variety. A simple exercise using our household data for Food from 1998 

to 2005 illustrates this point. We first match households across years to eliminate variation from 

household-specific tastes, so that inflation between t-1 and t is calculated using the same 

households. We then calculate the log-change in two traditional price indexes by income 

percentile: a Laspeyres price index and a Paasche price index. A Laspeyres price index weights 

prices using quantities in the earlier period – it therefore ignores second-order effects from 

product-substitution and therefore overstates true inflation. The price of the basket that the poor 

used to purchase is rising as rapidly as for wealthier households and more rapidly than for 

households in the middle of the income distribution. The Paasche price index uses quantities 

from the last period to weight price changes and therefore picks up this substitution effect. But 

the Paasche index understates true inflation because it does not capture some of the welfare cost 

of making this substitution.  

Figure 11A shows that the poor are doing much more substitution than the rich – the very 

rich appear to respond little to price changes for food items. Moreover, our Sato-Vartia price 

index captures both these effects and lies neatly in  the middle of the Laspeyres and Paasche 

indexes. Since Figure 11A is in log-points, the better known Fisher Index is the average of the 

Laspeyres and Paasche indexes, and in Figure 11B we see it is almost indistinguishable in 

practice from the Sato-Vartia index. 

Our results are also mostly driven at a very fine level of product detail. We show this by 

eliminating detail from our data and constructing price indexes for Food for 1994-2005 at the 

module level (640 categories) using average expenditure weights. We then use income-specific 

expenditure weights at the module level to weight price changes. Figure 12 shows that almost all 

of our food result disappears when we do this. This implies that our results are not driven by the 

price of coffee relative to the price of water, but by the price of Illy versus the price of Folgers 

and Taster’s Choice. Whenever prices become more dispersed at this fine level, a price index for 

poorer consumers is likely to rise less rapidly than one for wealthier households. Poorer 

consumers shift purchases to products that have been rising in price less rapidly. Since poorer 

consumers already systematically purchase less expensive goods (Figure 4A), this suggests that 
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there is more room for this substitution process if the dispersion of prices of similarly defined 

goods (such as an ounce of milk) has been increasing over time.  

The uniqueness of the Homescan data is that we can make explicit adjustments for 

quality using simple techniques. But other publicly available data exhibit the same price 

dispersion pattern that is driving our results for a broader range of goods and services. The 

problem with these data is that quality adjustment is more difficult, but the price patterns are still 

suggestive. The three nondurable goods categories that are mostly not in our sample are food 

away from home (6.7 percent of household expenditures), gasoline and motor oil (5.0 percent) 

and apparel (4.8 percent). While we do not expect our finding to apply strongly to gasoline, we 

have evidence that it is strong in food away from home and apparel. The evidence for food away 

from home comes from two Zagat restaurant surveys for Chicago, one in 1988 and one in 2009. 

These surveys include a measure of price and quality (evaluated by diners). Figure 13 plots a 

simple nonparametric estimate of Chicago restaurant prices by quality (the sum of the ratings for 

food, décor and service). The figure suggests that inflation for restaurants with low quality 

ratings has been about 40 log points between 1988 and 2009 or almost 2 percent annually, while 

restaurants with higher ratings have experienced inflation around 60 log points or almost 3 

percent annually. As in our non-durable sample, this rising relative price of quality is the 

proximate cause of our real inequality result. 

The same patterns are even more pronounced in clothing. Monthly US Imports of 

Merchandise data contains detailed shipment information on over 3,000 textile, clothing and 

footwear products. We use this data to construct percentiles of the unit import price distribution 

for each of these products, where the p-th percentile is the price where p-percent of the product 

by value sells at or beneath that price. Figure 14 summarizes these results. In 1994 the typical 

50-th percentile item sold for 56 log-points more than the equivalent 10-th percentile item, while 

the 90-th percentile item sold for a 74 log-point premium over the 50-th percentile. By 2005 the 

50-10 premium had risen to 70 log-points and the 90-50 premium rose to 96 log-points. Over this 

11-year period, the price of an item at the 90-th percentile rose 3 percent annually relative to its 

10-th percentile equivalent. 

Additional evidence can be provided by international trade. Trade data values and 

quantities have long been collected by detailed product classification. US trade data is available 

electronically since 1972. From 1990-2007, monthly Census Bureau DVDs "US Imports of 
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Merchandise" were used to construct percentiles of the price distribution for each HTSUSA 10-

digit product (typically over 3 million observations each year on around 15,000 products). These 

are summarized in Figure 15A for all products, which shows a steady increase in price 

dispersion. Similarly more aggregate annual US Import data from 1972-1988 contain about 

125,000 observations annually on around 10,000 TSUSA 7-digit products.11 Figure 15B shows 

that rising price dispersion has been a feature of this data since 1972, suggesting that a price 

index for the poor for all goods has likely been declining relative to the price index of the rich 

decades before the start of our sample period. 

The evidence outside of tradable goods is harder to obtain. However, a recent paper by 

Enrico Moretti (2008) shows that the price of housing has been rising much faster for higher 

income earners than for lower-income earners, enough to erode about half of the rising return to 

college between 1980 and 2000. While the mechanisms underlying that paper may differ, it 

seems that price dispersion that has been present in non-durable goods has also been a pattern of 

most market-provided goods and services for decades. This makes it likely that our formal price 

index results using the ACNielsen Homescan data are not peculiar to that sample or time period, 

but may indeed be representative of consumer expenditures generally. 

 

VI. Conclusion 

This paper uncovers a new fact: non-durable inflation for poorer households has been 

substantially lower than for richer households. The result is surprising for a number of reasons. 

First, empirical studies have been computing price indexes for different types of household 

characteristics without finding large differences. However, all of our results come from an 

increase in price dispersion at a fine level of product detail, and hence was not captured in 

previous studies. Second, a large literature has focused on the rising inequality observed in 

official statistics, but have mostly abstracted from the fact that these official measures are based 

on a single price index for a representative consumer. This assumption is not crucial in a world 

with a stationary relative price distribution or where an identical basket of goods is consumed by 

different income groups. However, using household data on non-durable consumption, we 

                                                            
11 US trade data moves to a new classification in 1989, but the most detailed Census Bureau data DVDs were first 
released in 1990. 
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document that the relative prices of low-quality products that are consumed disproportionately 

by low-income consumers have been falling over this period. 

This fact implies that measured against the prices of products that poorer consumers 

actually buy, their “real” incomes have been rising steadily. As a consequence, we find that 

around half of the increase in conventional inequality measures during 1994 – 2005 is the result 

of using the same price index for non-durable goods across different income groups. Moreover, 

given that the increase in price dispersion does not seem to be specific to our sample or time-

period, the overstatement in the increases in inequality from official measures can be even more 

significant, changing our view of how progress has been distributed in recent decades 

substantially.   

While we have described that rising price dispersion can account for the inflation 

differential across income-groups, in future research we plan on focusing on the deeper 

economic reasons driving this fact. We have three alternatives that could be potential 

explanations. First, much of our result appears to be driven by the availability of low cost 

alternatives valued by lower-income households. International trade with developing countries is 

an increasingly important source of inexpensive products sold to consumers – over 50 percent of 

non-energy imports in recent years come from developing countries compared with under 35 

percent in 1990.12 We have found a strong negative correlation between the changes in prices by 

product module and the change in Chinese trade in that same module over this time period. This 

strongly suggests that trade with China may have partly driven the increase in inflation 

differentials by income-group.13 The same negative correlation is not present with trade from 

developed countries.   

Second, if wealthier consumers spend more in skill-intensive products and services, then 

on balance they are purchasing relatively more of the labor of skilled workers. An increase in the 

skill premium will be reflected in the prices of the products and services that embody their labor. 

However, price indexes that do not allow for the basket of goods to differ across households will 

not capture this effect. Finally, the dramatic change in shopping patterns in recent decades could 
                                                            
12 The NICS have been classified as developing for this entire period for consistency. The fact of sharply rising 
exports from developing countries does not depend on this. 
13 We reported these results in a previous version of the paper. We have removed this analysis from this paper as we 
undertake a more ambitious exercise to more precisely capture the role that trade with China has played in 
explaining the fact uncovered in this paper. The UPC-level Homescan data lacks an important detail – the country of 
production of the good. Two teams of undergraduates are scanning UPC codes and entering country of origin details 
– which can be determined for most products, especially nonfood items.  
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possibly be thought as an exogenous change in productivity in favor of the poor. The advent of 

supercenters could imply that final productivity in low-priced goods has increased by more than 

for other goods. This could help explain the change in shopping patterns across households 

together with the price effects we find in this paper. We hope to explore these possibilities in 

future research.  
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Figure 1: Real Household Income Levels by Percentile 

 

Source: Census; Selected Measures of Household Income Dispersion: 1967-2007 

Figure 2: Hypothetical Mappings From Income To Welfare 
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Figure 3A: Household Income Distribution in ACNielsen Sample

  
Figure 3B: Household Head Education Distribution in ACNielsen Sample 
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Figure 4A: Relative Prices Paid for Similarly Defined Goods 

 
 

 
Figure 4B: Relative Prices Paid for Identical UPC 
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Figure 5A: UPCs per Household in ACNielsen Sample  

 
 
 

Figure 5B: Non-Food Expenditure Shares on New Goods by Quintile 2003 
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Figure 6: Food Share in ACNielsen Sample 

 
 
 

Figure 7A: Food Inflation Rate by Percentile 1994-2005 
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Figure 7B: Non-Food Inflation Rate by Percentile 1994-2005 

 
 
 

Figure 7C: Cost of Living Index for Entire Sample by Percentile, 1994-2005 
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Figure 8: Household Income and Welfare Distribution: 1994 and 2005 
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Figure 9A: Rising Price Dispersion for Food UPCs 

 
 

 

Figure 9B: Rising Price Dispersion for Non-Food UPCs 
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Figure 10A: Shopping for Food at Walmart by Quintile 
Share of Food Expenditure 

 
 
 

Figure 10B: Shopping for Food at Wholefoods by Quintile 
Share of Food Expenditure 
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Figure 11A: Laspeyres, Paasche and Sato-Vartia Price Indexes by Percentile for Food 
1998-2005 

   
 
 

Figure 11B: Fisher and Sato-Vartia Price Indexes by Percentile for Food 1998-2005 

 
 

 

0.02

0.04

0.06

0.08

0.10

0.12

0.14

5 15 25 35 45 55 65 75 85 95

Paasche Laspeyres Sato‐Vartia

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

5 15 25 35 45 55 65 75 85 95

Sato‐Vartia Fisher



36 

 

Figure 12: Food Price Inflation by Percentile Applying Income-Specific Weights to Price 
Indexes for 640 Food Categories 1994-2005 

 
 
 

Figure 13: Prices of Zagat-Rated Restaurants 
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Figure 14: Rising Price Dispersion For US Textile, Clothing and Footwear Imports 

 
 
 

Figure 15A: Rising Price Dispersion for All US Imports 1990-2007 
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Figure 15B: Rising Price Dispersion for All US Imports 1972-1988 

 

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

50‐10 90‐50


