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CHAPTER THREE 

 
 
 

Radar remote sensing of regenerating tropical forests 
 

 

 

 
The framework for the research presented in this thesis is the interaction of SAR 

backscatter, depending on its temporal, spatial, spectral and polarisation characteristics, 

with regenerating tropical forests. This chapter reviews the use of SAR images to 

estimate forest properties (such as biomass) and classify forest types (such as 

regenerating forests) within this framework.  

 

This chapter outlines how SAR backscatter has been related successfully to forest 

biophysical variables and used for biomass estimation and classification, with emphasis 

on regenerating tropical forests. 

 
 

3.1. Radar remote sensing of forests 
 
 

Our current understanding of the interaction of microwave radiation with forest canopies 

has been obtained primarily from temperate and northern forest ecosystems (e.g. Sader 

1987, Le Toan et al. 1992). Limited species diversity coupled with spatially and 

structurally homogeneous stands made the backscatter from these formations easier to 

understand and model, therefore, a great amount of research has been devoted to them 

(Leckie and Ranson 1998).  

 



                                                                                                                Radar remote sensing of regenerating tropical forests 

 25

Although there are major differences between temperate, northern and tropical forests, 

the main findings of radar remote sensing of temperate and northern forests also apply 

to tropical forests.  

 

Since the 1960s radar systems have been recognised as particularly useful for military 

applications in tropical regions (such as in Vietnam), where cloud cover is persistent. In 

the 1970s radar data were declassified and airborne high frequency radar systems were 

used for mapping natural resources at continental scales. For example, the Brazilian 

RADAM (Radar Amazon) Project, one of the largest accomplishments in resources 

surveys by SAR data (Azevedo 1971, Leckie and Ranson 1998). During 1980s and 

1990s there was a significant growth in research focused on developing approaches for 

using SAR in ecosystem studies (Kasischke et al. 1997). This was due to the launching 

of many spaceborne SAR systems (such as the SAR onboard the Japanese Earth 

Resources Satellite (JERS-1) in 1992) and the increasing need to understand global 

environmental processes. 

 

To date, the progress made in the study of SAR data from tropical forests has been in 

the assessment of the potential of radar sensors for the discrimination of land cover 

types. The ultimate aims being that of (i) monitoring tropical land cover change (Nezry et 

al. 1993, Saatchi et al. 1997, Grover et al. 1999, van der Sanden and Hoekman 1999) 

and (ii) mapping forest biomass (Luckman et al. 1997a, 1998). These aims are generally 

included in a broader context intended to assess the contribution of radar to global 

environmental monitoring and ecosystem modelling (Leckie and Ranson 1998). 

 

 
3.1.3. Forest backscatter 

 

 
The main components and scattering mechanisms of the total backscatter from forests 

comprise backscatter from (1) crown surface and volume, (2) trunks, (3) direct from the 

ground, (4) crown-ground scattering and (5) double-bounce scattering from trunk and 

ground (Leckie and Ranson 1998). Figure 3.1 shows these components and the 

interaction of the main wavelengths used in operational radar remote of forests. Le Toan 

et al. (1992) also included multiple scattering from the branches and canopy attenuated 

trunk-ground scattering as influencing the total forest backscatter. 
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Figure 3.1. Main components and scattering mechanisms that influence the total backscatter 

from forests: (1) backscatter from crown surface and volume, (2) backscatter from trunks, (3) 

backscatter direct from the ground, (4) crown-ground scattering and (5) double-bounce scattering 

from trunk and ground (Leckie and Ranson 1998). Also, the interaction of the main wavelengths 

(bands X, C, L and P) used in SAR remote sensing is shown. 

 

 
The magnitude of the scattering mechanisms and the importance of the different 

components are dependent on geometric factors (e.g., structural attributes of trees, 

canopy and soil surface roughness) and dielectric properties of vegetation and 

underlying surface (e.g., moisture content of vegetation and soil) (Dobson et al. 1995). 

Wavelength, polarisation and incidence angle of radiation control these scattering 

mechanisms (Leckie and Ranson 1998) and the final backscatter as a result of surface 

and/or volume scattering. 

 

At X band, which is a short wavelength, the backscatter results mainly from the upper 

part of the canopy (Le Toan et al. 1992) and the leaves, twigs and small branches 

(Leckie and Ranson 1998). There is little penetration of the radiation into the canopy, 

therefore, volumetric scattering and soil contribution to the final backscatter are weak.  
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At C band, which is a intermediate wavelength, greater penetration of the radiation into 

the canopy enables further sources of scattering to be active and so there is some 

volumetric scattering. Typical sources of scattering at C band are secondary branches 

and leaves (Ranson and Sun 1994, Leckie and Ranson 1998). The penetration of crown 

thickness by the radiation is normally not exceeded (Le Toan et al. 1992). 

 

At longer L and P band wavelengths, the penetration of the radiation into the canopy is 

deeper and components from the lower parts of the canopy are included in the 

scattering (Le Toan et al. 1992), as well as the major woody biomass components 

(trunks and branches) (Dobson et al. 1992). Trunk-ground and crown-ground 

interactions are important at these wavelengths (Leckie and Ranson 1998) and are 

mainly dependent on the canopy structure and openness. Foliage and small branches 

act as attenuators of the radiation at these wavelengths (Kasischke et al. 1997). 

 

The incidence angle of the SAR sensor determines the amount of vegetation illuminated 

by the radar beam. The angular dependence is stronger for surface scattering 

mechanisms, when higher scattering is observed for small incidence angles (Leckie and 

Ranson 1998). Volumetric scattering mechanisms in the canopy will dominate for high 

incidence angles, as a large amount of the canopy is illuminated. For incidence angles 

close to nadir, depending on the wavelength and forest type, the ground will contribute 

to the scattering mechanisms.  

 

The polarisation of the radiation determines the type of interaction with the forest 

components. Co-(or like) polarised radiation interact with structures with a similar 

orientation, so vertical stalks will interact strongly with VV (Vertical transmit and receive) 

polarisation. Horizontal branches or the soil surface interact strongly with HH (Horizontal 

transmit and receive) polarisation. HH can also be a result of trunk-ground scattering 

interactions (Dobson et al. 1992) and VV is more sensitive to canopy attributes (Dobson 

et al. 1995). Cross-polarised backscatter (HV - horizontal transmit and vertical receive 

and/or VH) is related to volumetric scattering, as the canopy is a medium capable of 

depolarisation (Saatchi and Rignot 1997). In general, double bounce trunk-ground, when 

not as a result of a perfect corner reflector situation (Leckie and Ranson 1998), is more 

likely to produce backscatter in a distinct polarisation than the received one (Waring et 

al. 1995).  
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3.2. Modelling forest backscatter 
 

 

Interpretation of radar imagery relies on knowledge about backscatter process and the 

relative importance of various scattering mechanisms that contribute to the final 

backscatter (Richards 1990). When trying to establish links between backscatter, 

scattering mechanisms and vegetation components, energy-matter interaction models 

have been used. Many types of models are available to predict the backscatter for a 

given target and SAR parameters. Comparison with real SAR data allows various 

mechanisms and the contribution of each vegetation component in the final backscatter 

to be understood. For backscatter modelling purposes, the forest canopy has two main 

characteristics: the gross structure of the scattering medium and the geometry and 

electromagnetic properties of the individual vegetation components (Saatchi and 

McDonald 1997). 

 

There are several types of backscatter models. When based on electromagnetic theory 

and known expressions for backscatter coefficients, these models are called radiative 

transfer (RT) models, and their ‘order’ is determined by the complexity of scattering 

taken place at the target (Richards 1990). First order RT models take into account only 

volume, surface and double-bounce (from trunk and ground and foliage or branches and 

ground) scattering mechanisms. Backscatter involving two or more scattering events is 

thought to be attenuated inside the canopy and is considered in the second order RT 

models (Richards 1990). There are several examples of first order radiative transfer in 

the literature, but by far the most utilised is the Michigan microwave canopy scattering 

model (MIMICS) (Ulaby et al. 1990). This model considers the canopy as two distinct 

homogeneous layers over a ground surface. The first order solution consists of a sum of 

the scattering mechanisms occurring between these three layers (McDonald et al. 

1991). 

 

Other types of backscatter models are the index or regression models, which are based 

on preconceived mathematical expressions and the model parameters are found by 

regressions (Richards 1990). The disadvantages of these models are the dependence 

of model parameters (where a change would preclude application on other situation) 

and little information provided on the physics of the scattering events involved (Richards 

1990). A third type of model is called functional or conceptual, but could be called 
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phenomenological because of their ability to explain phenomena rather than energy-

matter interactions (Richards 1990). 

 

Few situations, such as the specular reflection from a water surface, can be modelled 

exactly. The complexity of a forest ecosystem may require a combination of different 

models (Richards 1990). Also, the straightforward inversion of the models to obtain the 

required output is unlikely and connecting models are often needed (Kasischke and 

Christensen 1990).  

 

Backscatter models are evolving to be more complex and realistic (Leckie and Ranson 

1998). Recently, Castel et al. (2001) presented the Architectural Plant Model (AMAP), 

which relies on both qualitative and quantitative architectural plant growth descriptions. 

The AMAP model provides a more realistic 3-D view of trees and allows differentiating 

vertical profiles of ageing canopies. A RT model was modified, fed by canopy 

parameters derived by using AMAP model and successfully tested using data from pine 

stands in Southern France (Castel et al. 2001). 

 

For tropical forest environments, the available current backscatter models would require 

adaptations to take into account a large number of vegetation variables. The difficulties 

in obtaining data required as input for the available models also hamper their application 

for such environments. However, some authors have used existing models such as 

MIMICS (Grover et al. 1999) and a model based on the one devised by Attema and 

Ulaby (1978) (Luckman et al. 1998) to try to understand scattering mechanisms over 

tropical forests. 

 

To date, few attempts have been made to construct backscatter models that are 

applicable exclusively to tropical ecosystem variables (Leysen, pers. comm. 1998). 

 

 

3.3. Biomass estimation and mapping 
 

 

The study of radar remote sensing of forests has been aided by theoretical models, 

which have helped researchers to understand the causative factors for the backscatter 

coming from forests (Dobson et al. 1995). The dependency of backscatter on above 

ground biomass was observed and related to the penetration of the radiation into the 
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canopy and interaction with the trunk, where most of the volume, therefore, biomass of 

the vegetation is concentrated (Sader 1987, Le Toan et al. 1992, Dobson et al. 1992).  

 

HV polarisation in longer wavelengths (L or P band) is the most sensitive to biomass 

(Sader 1987, Le Toan et al. 1992, Ranson et al. 1997a) because it originates mainly 

from canopy volume scattering (Wang et al. 1995), trunk scattering (Le Toan et al. 1992) 

and is less affected by the ground surface (Ranson and Sun 1994). The sensitivity of 

backscatter to biomass is, however, limited by an asymptotic response of backscatter 

beyond certain levels of biomass, a phenomenon which is wavelength dependent 

(Dobson et al. 1995, Kasischke et al.1997). This ‘saturation’ of the backscatter is 

considered the limit for an accurate estimation of biomass from SAR data (Imhoff 1995a) 

and normally corresponds to backscatter coming from biomass of mature forest or 

dense forest vegetation (table 3.1). 

 

 

 
Table 3.1. Saturation levels for backscatter/biomass relationship 

 

 

Author Type of forest Band Biomass (T ha-1) 

Sader (1987) Temperate broadleaf 

and pine 

L 100 

Dobson et al. (1992) Two species of pine P 

L 

100-200 

Rauste et al. (1994) Temperate coniferous L 100 

Imhoff (1995a) Combined data from 

conifer and broadleaf 

evergreen 

C 

L 

P 

20 

40 

100 

Rignot et al. (1997) Tropical L Likely close to 100 

Luckman et al. (1997a) Tropical L 60 

Araújo et al. (1999) Tropical L 100 

 

 
The lack of a backscatter/biomass relationship does not necessarily indicate the lack of 

sensitivity of backscatter to vegetation. For example, a structural descriptor described as 

a ratio between vegetation surface area and volume (SA/V) was found by Imhoff 

(1995b) to have an influence on backscatter  
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Some approaches have been proposed to minimise the influence of the asymptote or 

extend the range of estimated biomass from SAR data. Most of these relate to 

polarisation and bands ratios, meant to isolate the contribution of biomass to the 

backscatter and reduce the effect of forest structure (Ranson and Sun 1994, Foody et 

al. 1997). As forest backscatter in different wavelengths and polarisations originate from 

separate layers of a canopy, the use of multiple channels or multistep approaches (e.g., 

Dobson et al. 1995) could be used to estimate total above-ground biomass (Kasischke 

et al. 1997). For example, the ratio PHV and CHV was used successfully by Ranson and 

Sun (1994) to estimate biomass up to 250 T ha-1 in a mixed conifer/deciduous temperate 

forest. 

  

Dobson et al. (1995) consider these band ratios too simplistic, although effective in 

extending the range of estimable biomass. Their argument is that the biomass estimate 

can hide a variety of structural factors, as same biomass values can represent few tall 

trees or many short trees. The corresponding backscatter will be much higher for the 

few tall trees than for the many short ones (Dobson et al. 1995). In spite of this, a 

combination of bands and polarisations in a multistep approach made possible the 

mapping of biomass in a mixed temperate forest up to 250 T ha-1 (Dobson et al. 1995). 

Saatchi et al. (1997) found an early asymptote on the backscatter in regenerating 

tropical forest and attributed it to the lack of the contribution of fresh biomass 

components (like lianas and leafy vegetation understory and overstory) in the calculation 

of (woody) biomass.  

 

The backscatter/biomass issue must be treated with care, as a lot of variation exists not 

only on the ecosystems themselves, but also in the way their biomass are estimated. 

 

Establishing a strong link between backscatter and forest variables is an important part 

of the successful estimation of forest biomass from backscatter. As already mentioned, 

models are often used to explain the relationship between forest variables, scattering 

mechanisms and SAR configuration parameters (Richards 1990, Kasischke and 

Christensen 1990). Another approach is the use of statistical analysis, where forest 

variables are related to SAR backscatter by regression models (Sader 1987, Le Toan et 

al. 1992, Rauste et al. 1994). Some authors used the combination of the two 

approaches, in most cases to assess the results of the predicted biomass or backscatter 

via regression (Ranson and Sun 1994, Ferrazzoli et al. 1997, Franson and Israelson 

1999). Statistical procedures such as stepwise regression were also used to determine 
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the best set of bands and polarisations to discriminate biomass levels (Ranson et al. 

1997a). 

 

The mapping of biomass in Northern Michigan forest was achieved successfully by 

Dobson et al. (1995) using a three-step process: (1) forest classification into structural 

categories, (2) estimation of structural variables (basal area, height and crown biomass) 

from polarimetric SAR data and (3) estimation of total biomass based on a simple 

biophysical model. Accuracy assessment was performed based on available land cover 

maps and was accurate up to a biomass of at least 250 T ha-1. Modelled backscatter 

and ratio images of multitemporal polarimetric SAR data were also used successfully to 

map biomass in a Northern forest of Maine (Ranson and Sun 1994). PHV data were 

used for estimating stem volume of forests in Finland (Rauste et al. 1994), as were pine 

forests biomass estimated and mapped (Beaudoin et al. 1994). A procedure devised by 

Ranson et al. (1997a) combined simulated variables of a forest growth model to 

AIRSAR data based backscatter model and the result was a third model relating all 

variables. The final map underestimated biomass and the backscatter asymptote was at 

biomass levels of 150 T ha-1 (Ranson et al. 1997a). For boreal forests, however, another 

procedure based on combined SAR and Landsat Thematic Mapper (TM) data allowed 

the estimation of biomass up to 150 T ha-1, with RMS (root mean square) errors around 

37 T ha-1 (Ranson et al.1997b). 

 

The mapping of biomass for a large area in Brazilian Amazonia used JERS-1 SAR 

mosaic data (Luckman et al. 1998) and the biomass categories mapped were from 6 T 

ha-1 to 13 T ha-1, 14 T ha-1 to 31 T ha-1 and above 31 T ha-1. The limitation of the rôle of 

SAR data on biomass estimation was attributed to the asymptote in the 

backscatter/biomass relationship (Imhoff 1995a, Luckman et al. 1998), although no 

alternatives were considered.  

 

 

3.4. Forest classification  
 

 

Classification of a remote sensing image is a process that recognises one or several 

categories of real-world objects in pixels (Mather 1999). Normally spectral patterns 

present within the images are used as a numerical basis for categorisation, due to 

objects inherent reflectance, emittance or scattering properties (Lillesand and Kiefer 

2000).  
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Classification can use also spatial and temporal information as a basis for 

categorisation. Spatial classifiers categorise image pixels based on their spatial 

relationships with the surrounding pixels and texture is a commonly used measure of 

these relationships (Lillesand and Kiefer 2000). The temporal domain can be used as an 

aid to the categorisation of spectral and spatial features present in remote sensing 

images. Some features can be identified only when, for instance, a particular season or 

phenological stage is reached. The classification process will then use combined 

information from the spectral and spatial domains in a temporal series of data (Lillesand 

and Kiefer 2000). 

 

The study of forest ecosystems usually requires their differentiation from the remaining 

land covers and the classification of specific vegetation communities (Kasischke et al. 

1997). Regenerating tropical forests, for instance, are normally found close to mature 

forest but also close to agricultural crops, pastures and urban settlements, making their 

differentiation from the remaining land cover very useful.  

 

Two main approaches used to classify SAR data have been (1) maximum likelihood 

classification (MLE) including supervised and unsupervised cluster analysis and (2) 

knowledge-based hierarchical decision trees (Kasischke et al. 1997). The extendibility of 

MLE classification results to global scales is usually impaired by the need for localised 

training (Kasischke et al. 1997). Knowledge-based approaches have been proposed to 

overcome this limitation by using explicit relationships between backscatter and 

vegetation structure and then reclassification based on these links and floristic 

community (Dobson et al. 1995, Kasischke et al. 1997, Bergen et al. 1998).  

 

Maximum-a-posteriori (MAP) Bayesian classifier was developed for the classification of 

multifrequency polarimetric SAR data and differed to the MLE approach because of the 

revisions on the decision rules about the classes nature (Saatchi and Rignot 1997). 

 

Recent research has shown promising results using segmentation methods (Oliver 

1998, Frery et al. 1999, Grover et al. 1999). These methods consist of aggregation of 

pixels with similar properties and limits defined by the borders of the segments (Yanasse 

et al. 1997). The segment labelling is performed afterwards in a classification procedure. 
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Artificial Neural Network (ANN) based classifiers are also a promising approach. Among 

ANN advantages are facilitated incorporation of different types of data which do not 

have to fit any particular statistical distribution (Atkinson and Tatnall 1997). 

 

The advantages of each approach depend on the suitability of the classification 

estimator to the available data set, which will determine a high accuracy on the 

classification process. Good field knowledge, field data and adequate maps make far 

easier algorithm training (when needed) and accuracy assessment of the final 

classification.  

 

Temperate and boreal forest types have been classified with radar data (Saatchi and 

Rignot 1997, Bergen et al. 1998, Williams et al. 1999). For management inventory 

purposes, however, radar data does not provide detailed enough information (Leckie 

and Ranson 1998). Nevertheless, radar data can provide complementary information to 

aerial photographs (Leckie and Ranson 1998) and forest biophysical parameters have 

been estimated (Ranson and Sun 1994, Dobson et al. 1995, Ranson et al. 1997b). 

When radar data are combined with optical data, forest mapping capabilities are usually 

increased. 

 

Manual interpretation of radar images played an important rôle on the mapping of 

tropical forest types in Brazil and Colombia (RADAM Project) (Kasischke et al. 1997) 

and today is still considered an important technique for discriminating forest types 

(Leckie and Ranson 1998, Kuntz and Siegert 1999).  

 

Accurate automatic classification of radar data for tropical forest is still under 

development and some of the achievements are showed in table 3.2. Merging 

classification techniques (Rignot et al. 1997), the use of estimators adapted to radar 

data (Nezry et al. 1993, Saatchi et al. 1997, Saatchi et al. 2000) and the use of texture 

measures derived from SAR images (Oliver 1998, Saatchi et al. 2000) seem to be the 

trends for the high classification accuracy of the vegetation on the tropics. Some 

authors, however, found the use of a minimum of two SAR C, L and/or P channels 

essential to discriminate between regenerating forest and selectively logged forest (van 

der Sanden and Hoekman 1999). Similarly to temperate forests, SAR for tropical forests 

has promising but yet complementary capabilities (van der Sanden and Hoekman 1999). 

 
Optical sensor data are commonly combined with SAR images when studying tropical 

forests (Nezry et al. 1993, Rignot et al. 1997, Araújo et al. 1999). Time series of optical 
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images have been used as a reference in the field or prior to field work to establish the 

age of clearings and land cover history (Foody et al. 1997, Luckman et al. 1997a, 

Yanasse et al. 1997, Salas and Skole 1998). Thematic maps reflecting age-related 

areas were created from classified TM images in a pixel-to-pixel Boolean basis 

(Sant’Anna et al. 1995). This procedure, however, is still not possible with SAR images, 

due to the much poorer classification performances in tropical forest classes. 

 

 
3.4.1. Spatial characteristics of backscatter - texture 
 

 

Texture can be defined as the variation of the grey level of a single pixel (tone) within a 

neighbourhood (Mather 1999). This variability can be structured and reflects the spatial 

relationships among grey levels of pixels (Mather 1999). Texture is dependent on (i) the 

scale of the variation to be defined and (ii) on the scale of observation, limited by the 

spatial resolution of remotely sensed data (Mather 1999). For backscatter, textural 

attributes quantify the pattern of spatial variations in the strength of backscatter (van der 

Sanden and Hoekman 1999). An optimised texture measure depends on the statistical 

properties of the backscatter (Oliver and Quegan 1998) and is based on the statistical 

dependence between pixels within a region (Kurvonen and Hallikainen 1999). 

 

Many texture measures in remotely sensed data are referenced as important tools in 

vegetation and land cover classification. Local statistics texture measures are statistical 

moments (such as mean, skewness, kurtosis and coefficient of variation (CV)), of the 

window from which the texture of the image is extracted (Kurvonen and Hallikainen 

1999). Second-order texture measures (such as entropy, energy, contrast, etc.) relate to 

statistical dependence between pixels in a given distance and direction and are 

calculated from the grey-level co-occurrence matrix (GLCM) (Kurvonen and Hallikainen 

1999, Mather 1999). Another approach for texture analysis includes the variogram that 

provides a concise description of the scale and pattern of spatial variability in remotely 

sensed data (Curran et al. 1998). These texture measures will be discussed in detail in 

chapter 6. 

 

In general, there is an unclear utilisation of the spatial domain in the analysis of remotely 

sensed data (Curran et al. 1998). While recent forest discrimination research has shown 
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interest on the textural approach, results are difficult to extrapolate because of the 

variety of physical environments and techniques used.  

 

For temperate forests in Finland, texture measures (CV and four measures derived from 

GLCM) from a multitemporal set of SAR images were found to increase the accuracy of 

classification results, even though the final accuracy was around 65% (Kurvonen and 

Hallikainen 1999).  

 

Table 3.3 shows some recent results using SAR textural information for tropical forest 

discrimination. Low discrimination accuracy results and absence of a texture measure 

that works with all or certain forest types are the main conclusions that can be draw from 

table 3.3. Also, the use of a simple texture measure (such as the mean) can result in 

accurate discrimination between forest types (Yanasse et al. 1997, Podest and Saatchi 

1999). 

 

Despite low accuracy in the discrimination of forest types, some authors report 

encouraging representation of classes with distinctive texture signatures (Miranda et al. 

1996, 1998, van der Sanden and Hoekman 1999). Perhaps the gap in texture modelling 

(Oliver and Quegan 1998) will be resolved with a better understanding of the physics 

that governs backscatter and associated texture, given that texture is still a promising 

approach.  

 

 

3.4.2. Temporal characteristics of backscatter  
 

 

The dielectric characteristics of vegetation and soils have a strong effect on backscatter 

and are important sources of variation in σ°. Varying weather conditions are related to 

changes in water content of vegetation and soils, therefore, impact directly on 

backscatter (Gates 1991). In addition to rainfall, air temperature and wind speed can 

induce physiological and/or geometric changes in the vegetation components and 

influence backscatter (Leckie and Ranson 1998). The monitoring of seasonal 

phenological development is a substantial part of forest ecosystem studies and justifies 

the study of temporal backscatter.  
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Table 3.2. Examples of classification approaches using radar imagery in tropical ecosystems (adapted from Kasischke et al. 1997). 

 
Ecosystem 

 
Purpose 

 
Classifiera 

Data 
source 

No of classes 
and typesb 

 
Accuracyc 

Radar band/ 
polarisation 

 
Reference 

Tropical forest 

and adjacent areas 

Vegetation mapping Supervised MLE 

adapted to radar 

SIR-B 

SPOT-HRV 

6 and 8 

W,B,A,F,U,Aru 

plus rF, C 

Medium on SIR-B High 

on SIR-B +HRV (8 

classes) 

 

LHH 

Nezry et al. 

1993 

Subtropical forest 

and wetlands 

Ecosystem mapping  

MLE cluster 

 

AIRSAR 

7 

W,B,A,H,S, 

F(2) 

 

Medium 

P,L,C, all 

polarisations 

Pope et al. 

1994 

Tropical floodplain 

forest 

Map forest flooding Decision 

tree 

SIR-C 5 

W,fH,H,F,fF 

High LHH,LHV, 

CHH 

Hess et al. 

1995 

Tropical forest and 

adjacent areas 

Map deforestation 

and regeneration 

Supervised on TM, 

after MAP on SIR-C 

SIR-C 

Landsat TM 

6 and 7 

W,F,fdF,yrF,B, 

Ct 

High on SIR-C 

Higher on SIR-C 

+TM (7 classes) 

LHH, LHV, 

CHH,CHV 

Rignot et al. 

1997 

Tropical forest and 

adjacent areas 

Map deforestation 

and land use 

 

MAP supervised 

 

SIR-C 

5 

F,rF,A,Ct,dF 

 

Medium 

LHH, LHV, 

CHH,CHV 

Saatchi et al. 

1997 

Tropical forest and 

adjacent areas 

Map forest and non 

forest 

Annealed 

segmentation 

CCRS airborne 

SAR 

2 

F, nF 

High with texture  (from 

parameters of K-

distribution) 

 

CHH 

 

Oliver 1998 

Amazon Basin Map land cover 

types in the 

Amazon Basin 

MAP and hierarchical 

decision based on 

texture measures 

JERS-1 SAR 

100 m resolution 

image mosaic 

14 

W, r, F, nF and 10 

vegetation types 

Medium with first order 

texture measures 

LHH Saatchi et al. 

2000 

aClassification approaches: Maximum likelihood estimator (MLE), Maximum-a-posteriori Bayesian (MAP). 
bAgriculture (A), water (W), bare soil (B), clearings (c), urban (U), forest (F), flooded (f), young (y), regenerating (r), trunks (t), rubber (ru), disturbed (d), non(n), dead (d). 
cHigh indicates >90% classification accuracy, medium indicates 70-90% classification accuracy.
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Table 3.3. Examples of the use of texture measures in SAR imagery of tropical forests (adapted from Kasischke et al. 1997). 

Ecosystem Purpose Texture measure. 
Result assessment 

Data 
source 

No of classes 
and typesb 

Discrimination 
accuracyc 

Band/ 
polarisation 

Reference 

Tropical forest 

and adjacent areas 

Vegetation 

mapping 

Semivariogram texture 

classifier. Confusion 

matrix. 

JERS-1 4 

W,F, oF, fF 

Low 

 

LHH Miranda et al. 

1996 

Tropical forest 

and adjacent areas 

Discriminate 

regenerating 

stages 

Tonal mean, CV 

(Coefficient of Variation). 

BD and ED. 

SIR-C, 

Landsat TM age 

map 

7 

RA, (0,2], (2,4], 

(4,6], (6,8], >=9 

years old, F 

Good for the mean in L 

band (LHV better) 

Poor with CV, better with 

L band 

L,C, all polari- 

sations 

Yanasse et al. 

1997 

Tropical forest 

and adjacent areas 

Discriminate 

regenerating 

stages 

K-distribution α 

parameter, CV, GLCM 

contrast. CV. 

CCRS airborne 

SAR, Landsat TM 

age map 

5 

B, 1-3, 4-6, >6 

years old, F 

Low and only between F 

and other classes 

Better with CV 

CHH,CVV, 

 

Luckman et al. 

1997b 

Tropical forest 

and adjacent areas 

Map major 

land cover 

types 

CV,mean,variance, 

entropy,energy, 

skewness,kurtosis, 

contrast. MLE and BD. 

JERS-1 SAR 

100 m spatial 

resolution 

8 

W, F, rF, nF, fF, 

fnF, wS, nwS 

Medium with mean, 

variance and entropy. 

Mean best for overall 

separability 

LHH Podest and 

Saatchi 1999 

Tropical forest and 

adjacent areas 

Map detailed 

land cover 

types 

GLCM derived texture 

measures. TDij, MLE, 

Kappa statistics. 

CCRS airborne 

SAR 

8 

F (5 types), lF, 

rF, nF 

Low, better measures 

contrast and correlation 

X,C all  

polari- 

sations 

van der Sanden 

and Hoekman 

1999 
aResult assessment approaches: Maximum likelihood estimator (MLE), Bhattacharyya distance (BD), Euclidean distance (ED), transformed divergence (TDij). 
bAgriculture (A), water (W), bare soil (B), clearings (C), forest (F), recent activities (RA), savanna (S), flooded (f), logged (l), regenerating (r), open (o), woody (w), disturbed (d), non(n). 
cHigh indicates >90% classification accuracy, medium indicates 70-90% classification accuracy, low indicates <70% classification accuracy..
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Results from studies on the seasonal forest backscatter indicated that soil frost and 

snow can reduce relative backscatter values and be detected at L and C bands 

(Pulliainen et al. 1999). Also, the absence of leaves in deciduous forest trees lowered 

the backscatter at C band, raising the assumption of leaves as highly forward 

scatterers (Ahern et al. 1993). Other authors, however, found a very weak correlation 

between ERS-1 SAR C band backscatter and seasonal changing variables, as 

foliage dynamics (Mougin et al. 1998). Weather related variables (rainfall, wind speed 

and air temperature) were reported as not being clearly related to backscatter from a 

deciduous-coniferous forest (Mougin et al. 1998). 

 

Seasonal effects were observed in a walnut orchard backscatter at X and L bands. 

Changes at X band backscatter were attributed to changing water content of 

branches and leaves, while at L band to both soil and vegetation water content 

variation (McDonald et al. 1991). 

 

For tropical environments, seasonal L band backscatter was detected by Rosenqvist 

(1996a) from oil palm stands. The seasonal behaviour corresponded to high 

backscatter coinciding with the two annual dry seasons in the area and was 

attributed to changing water content of leaves and fronds. For rubber tree 

plantations, however, even after shedding their leaves, little variation of backscatter 

with time was detected (Rosenqvist 1996a). In Brazilian Amazonia, a backscatter 

seasonal cycle, corresponding roughly with low backscatter for dry season and high 

backscatter for wet season, was detected in low biomass regenerating forest plots 

and attributed to the changing water content of vegetation and soils (Kuplich and 

Curran 1999). 

 

A general consensus among researchers is that data from the dry season in the 

tropics are the most useful when differentiating vegetation classes (Rignot et al. 

1997, Luckman et al. 1998, Grover et al. 1999, Kuntz and Siegert 1999). In addition, 

backscatter/biomass relationships are stronger during the dry season, because the 

influence of water and consequent increase on backscatter are minimised (Luckman 

et al. 1998, Kuplich and Curran 1999). 

 

For Amazonian forest, the influence of the season on the backscatter is not restricted 

to the effect of water, but also to land cover dynamics, which determines, in addition 

to the increased soil moisture in wet seasons, the availability of some temporary 
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crops (Saatchi et al. 1997). Moreover, the dry season is the preferable time for 

logging, forest clearing and pasture burning, thus care must be taken when analysing 

dynamic tropical environments (Saatchi et al. 1997). 

 
 
3.5. Summary 
 

 
The study of backscatter of regenerating tropical forests is a relatively new topic 

(Foody et al. 1997, Luckman et al. 1997a, 1998, Yanasse et al. 1997, Salas and 

Skole 1998). When describing tropical land cover types the diversity of logging and 

agricultural practices in areas surrounding tropical forest is revealed. Potential 

sources of forest regeneration are added to the ones following slash and burn cycles. 

Disturbed forests as a result of selective logging (by hand or machine) are also 

common land cover types described for the tropics (Saatchi et al. 1997, van der 

Sanden and Hoekman 1999, Kuntz and Siegert 1999, Kuplich et al. 2000b). Different 

practices trigger forest regeneration and most of the works concerning backscatter of 

tropical had at least one land cover type or class labelled either as regrowth forest 

(Nezry et al. 1993, Pope et al. 1994, Rignot et al. 1997), secondary forest (Kuntz and 

Siegert 1999, van der Sanden and Hoekman 1999) or regenerating forest (Foody et 

al. 1997, Yanasse et al. 1997, Luckman et al. 1997a,b, 1998, Grover et al. 1999). 

 

As part of the regenerating forest process, deforested areas are usually present in 

tropical environments and its discrimination from mature forest assessed. 

Discrimination between these areas is a function of the contrast offered by the 

backscatter of the deforested areas (Ribbes et al. 1997). The type of logging seems 

to determine the intensity of radar backscatter, as woody debris can be removed or 

not. If removed and the soil is left bare, the radar response will be of the soils, 

therefore, the rules about roughness and soil moisture apply, with stronger 

backscatter for rougher and wetter soils (Ulaby et al. 1974).  

 

The presence of residual biomass after logging produces high horizontally polarised 

returns, as this polarisation interacted strongly with the remaining trunks (Rignot et al. 

1997). When some trees are left standing, double-bounce scattering occurs between 

trees and clear forest floor and LHH returns are higher than others bands in SIR-C 

configuration (Saatchi et al. 1997). If the wavelength penetrates the forest canopy, 
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horizontal co-polarised radiation will also give information about the underlying soil 

and canopy- and trunk-ground interactions (Hess et al. 1995). 

 

Some recent studies have suggested limitations on the use of C band in tropical 

forest area discrimination (Pope et al. 1994, Luckman et al. 1997b, Rignot et al. 

1997, Saatchi et al. 1997, Yanasse et al. 1997, Grover et al. 1999). The reason for 

that is the backscatter asymptote at low levels of biomass and consequent C band 

insensitivity to even young regenerating forest areas (Saatchi et al. 1997). The 

shallow penetration of the C band into forest canopies restricts its use for the 

differentiation between deforested areas and forest when the soil is dry and the 

influence of water is minimised (Luckman et al. 1997a, Grover et al. 1999). Kuntz and 

Siegert (1999), however, found some discrimination power on the texture extracted 

from ERS-1 SAR images (CVV band) for Indonesian forests. 

 

L band has proved some success in tropical vegetation studies, owing to its deeper 

penetration and volumetric interactions into the canopy (Grover et al. 1999). When 

configured as LHV its sensitivity to forest biomass and structure allowed some 

discrimination between regenerating stages (Yanasse et al. 1997) and between 

regenerating and mature forest (Saatchi et al. 1997). The backscatter asymptote was 

found to be the reason for the low separability between regenerating areas and L 

band with at least two different polarisations was suggested to perform this task 

(Rignot et al. 1997). 

 

Regenerating forest backscatter will approach that of the surrounding mature forest 

as the forest grows, so the differentiation between regenerating and mature forest 

can become difficult (Leckie and Ranson 1998, Salas and Skole 1998). 

 

Reliable assessment of various forest types including regenerating, selectively- 

logged and mature tropical forest required SAR data on C, L and/or P bands (van der 

Sanden and Hoekman 1999). Four biophysical indices derived from fully-polarimetric 

SAR data were used successfully to discriminate vegetation types (called landscape 

units) in the tropics (Pope et al. 1994).  

 

The great variety of tropical forest ecosystems still did not allow the finding of an 

ideal radar configuration capable of identification and discrimination at the desired 

level. A multitemporal approach along with texture analysis (Saatchi et al. 1997) can 

help clarify backscatter/tropical forest relationships. 



                                                                                                                Radar remote sensing of regenerating tropical forests 

 42

 

The influence of regenerating tropical forest characteristics (e.g. species 

composition, their structures and canopy properties) on the backscatter is still not 

fully understood. An initial attempt to group regenerating forests by their dominant 

species (therefore, reducing structural variability) was made and some encouraging 

results obtained (Foody et al. 1997). Variation in biomass was secondary to canopy 

spatial variability (canopy closure and homogeneity) in the backscatter of tropical 

forest in Belize (Pope et al. 1994). These highlight the limitations of approaches used 

to study tropical regenerating forests until now and the amount of work still to do.  

 

 


