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Abstract 
This paper empirically estimates the budgetary cost of wildfire suppression and assesses how 
development in wildfire-prone areas and climate change may affect future suppression costs.  
Given reasonable assumptions for development and warming trends, our statistical model 
predicts expenses devoted to protecting homes from wildfires in Montana will more than double 
by 2025. Our analysis uses daily data from 18 large wildfires that burned during 2006 and 2007. 
Using a mixed models framework, we select an optimal set of explanatory variables, including 
the number of threatened homes, size of fire, rate of spread, and the difficulty of terrain, from a 
broad initial list of potential explanations for wildfire suppression cost. We estimate that for the 
average duration fire, the additional suppression cost associated with 125 homes is around $1 
million. We applied our model to calculate the cost of protecting homes from wildfires from 
1985 to 2007.  The mean predicted cost of protecting homes is $42.5 million for the five warmest 
years and $1.8 million for the five coolest years.  We find that a one degree increase in average 
spring and summer temperature is associated with a 305 percent increase in area burned, and a 
107 percent increase in home protection costs.  These results suggest that climate change and 
development in wildfire-prone areas will likely lead to a dramatic increase in wildfire 
suppression costs in the near future. 
 
Summary 
Already a major budgetary concern in the U.S., the cost of fighting wildfires will increase if 
climate change and development trends continue.  Using current cost data for Montana, this 
study projects that the cost of protecting homes from wildfires will double to quadruple by 2025 
if current trends and policies continue. 
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INTRODUCTION 
 

The wildland– urban interface (WUI), generally defined as areas where structures and 
other human development meet or intermingle with undeveloped wildland (Office of Inspector 
General [OIG] 2006), is experiencing rising population growth and new housing (Radeloff et al. 
2005; Theobald and Romme 2007).  The development of fire prone areas has been driven, in 
large part, by the phenomenon of people moving to areas of high natural amenities, sometimes 
called amenity migration (Moss 2006).  This phenomenon is widespread in the United States 
(Johnson and Beale 1994; Johnson 1999), and is occurring in many other parts of the world as 
well, including the European Alps (Perlik, 2006, 2008), Norway (Flognfeldt 2006), Philippines 
(Glorioso 2006), Czech Republic (Bartos 2008), New Zealand (Hall 2006) and Argentina (Otero 
et al 2006, 2008). 

The conversion of land to residential development in the WUI has also been driven by the 
increasing popularity of large residential lots (Theobald et al. 1997; Hammer et al. 2004).  
Housing is becoming increasingly dispersed, particularly in areas rich in natural amenities, 
resulting in extensive land conversion adjacent to lakes, national parks, wilderness areas, 
seashores, and forests (Bartlett et al. 2000; Rasker and Hansen 2000; Radeloff et al. 2001; 
Schnaiberg et al. 2002; Radeloff et al. 2005; Gude et al. 2006; Gude et al. 2007).  Additionally, 
access to environmental amenities and public lands can be a primary motivation for residential 
development (Rudzitis 1999, 1996; Rasker 2006; Gude et al. 2006).  

While fire prone lands are being developed, the climate is warming, leading to more large 
fires (Westerling et al. 2006).  Recent work has concluded that weather conditions associated 
with warmer climates, such as the droughts, high winds, and increased lightning, (Price and Rind 
1994; Pollet and Omi 2002; Fried et al. 2004; Pierce et al. 2004; Westerling et al. 2006) will 
likely increase wildfire damage and costs.  These researchers have pointed out that with more 
extreme weather, we may experience a decrease in the ability of fuels management to lower fire 
suppression costs and economic losses.  Some regions are already experiencing fires, driven by 
drought and strong winds, that burn open forests, conventionally viewed as relatively fire 
resistant, and closed forests alike (Whitlock 2004). 

The cost of fighting wildfires has become a major budgetary concern for federal, state, 
and local agencies in the United States.  The wildfire problems in the WUI have received 
national attention as more acres and homes are burned by wildfire (National Interagency Fire 
Center [NIFC] 2007)  In fact, a recent government audit identified the WUI as the primary 
source of escalating federal firefighting costs, which exceeded $1 billion in three of the past six 
years (Office of Inspector General [OIG] 2006).  In 87 percent of large wildfires reviewed in the 
audit, the protection of private property was cited as a major reason for firefighting efforts (OIG 
2006). 

WUI homes are also often difficult to protect because of remoteness, steep slopes, and 
narrow roads.  These common characteristics of WUI homes can create dangerous situations for 
firefighters.  In the five-year period from 2002 to 2006, $6.3 billion in federal funds were spent 
fighting wildfires (NIFC 2007) and 92 people were killed during wildland fire operations 
(National Wildfire Coordinating Group Safety and Health Working Team 2007); but despite the 
firefighting efforts, 10,159 homes were lost to wildfires during this period (NIFC 2007). 

Recent wildfire suppression has been costly, but our estimates suggest that the magnitude 
of these costs may increase significantly. Currently, only 14 percent of the available wildland 
interface in the western United States is currently developed (Gude et al. 2008).  More 
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development in these sensitive areas would lead to more wildfire suppression costs, even in the 
absence of climate change.  Climate change will only exacerbate this effect.  Nearly all climate 
models project warmer springs and summers temperatures across the West (Intergovernmental 
Panel on Climate Change 2001). This means that large wildfires and longer fire seasons are more 
likely (Westerling et al. 2006; Running 2006), and if development trends persist, we can expect 
more homes to be threatened by these fires.  

This paper uses wildfire suppression costs in Montana as a case study to estimate the 
relationships among housing, climate, and fire costs.  Montana serves as an ideal study area 
because wildfire suppression issues in Montana are similar to those in other parts of the world.  
One of those similarities is the presence of natural amenities that attract residential development 
in fire prone areas.  Also, decision makers in Montana have become increasingly aware of the 
looming budgetary concerns related to wildfires.  In 2008, the cost of suppressing wildfires left 
the state with a $40 million budget shortfall, requiring a special legislative session to determine 
how to cover these costs.  Montana’s legislature subsequently called for a special interim 
committee to discuss how to avoid or cover these costs in the future.  At the time, a thorough 
quantitative assessment of the wildfire suppression costs in the WUI was unavailable.   

This research was conducted, in part, to provide policy makers with information about 
the extent to which housing, climate, and other factors, are related to fire suppression costs. This 
paper addresses three specific questions: 

1. What factors have been associated with variability in fire suppression costs? 
2. To what extent has housing contributed to fire suppression costs?   
3. How might future suppression costs change with increased housing and warmer 

temperatures? 
 
METHODS 
 

We conducted statistical analyses to identify the fire characteristics, including the extent 
of surrounding development, that were most strongly related to daily firefighting costs in 18 
large fires that occurred in Montana during 2006 and 2007.  We used a regression model to 
generate cost estimates of home protection for fire seasons dating back to 1985.  We also used 
our best fitting model to project the cost of wildfire suppression due to new development 
expected in Montana by 2025 based on the state’s recent rate of growth and pattern of 
development.  We then generated alternative cost scenarios, based on the intersection of the 
future housing projections and past fire seasons that occurred in warm versus cool years. 
 
Response and Explanatory Data 

 
The sample of 18 large fires in Montana included some that burned in remote areas where 

few or no homes were threatened, and some that burned through developed areas.  This sample 
of fires allowed for a comparison between fires that threatened homes, and those that did not.  
We investigated the importance of housing relative to the other factors that may affect 
suppression costs, including weather, vegetation, terrain, and other human factors including road 
access and threatened infrastructure.   

The data consisted of 294 days of information on total suppression costs and wildfire 
characteristics for 18 wildfires in western Montana (Figure 1).  We collected the data on wildfire 
costs and some of the data describing fire characteristics from national databases maintained by 
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federal and state firefighting agencies, including I-Suite Cost Reports and ICS-209 Forms.  The 
18 fires were selected because they met three criteria:  

(1) The fire burned in either 2006 or 2007, which guaranteed the availability of daily cost 
data. 

(2) The fire was large enough to guarantee the availability of daily Geographic Information 
System (GIS) data describing the fire (location, area, perimeter, etc.).  These data are not 
consistently available for wildfires smaller than 320 acres (129.5 ha). 

(3) The state of Montana contributed firefighting resources for the fire, which increased the 
relevance for the state of Montana legislative subcommittee that provided funding for the 
research. 

The resulting sample did not include fires that burned exclusively in grassland or fires smaller 
than 320 acres (129.5 ha).   The 18 fires studied were located in central and western Montana, 
and included: Ahorn, Black Cat, Brush Creek, Chippy Creek, Jocko Lakes, Meriwether, Novak, 
Pattengail, Rat Creek, Rombo Mountain, Sawmill Complex, Skyland, and W H Complex from 
2007, and Derby, Gash Creek, Sand Basin, Sun Dog, and Woodchuck from 2006. 

 
Figure 1.  The locations of 18 western Montana wildfires included in this study are shown 

 
The variables we employed in the analysis are listed in Table 1, alongside their data 

sources.  In addition to the variables collected from fire incident reports, we compiled 
information from weather stations, vegetation models, and property tax databases.  There were 
17 housing variables, 16 of which were derived from GIS, using county tax assessor records 
available from the Montana Department of Revenue.  For each home, the Montana Department 
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of Revenue’s computer assisted mass appraisal database contains information about the location 
of the home, described in terms of the public land survey system, which delineates an 
approximate grid with 160 acre (64.7 ha) cells.  Eight of the housing variables represented the 
total numbers of homes within 1 mi (1.6 km), 2 mi (3.2 km), 3 mi (4.8 km), …, 8 mi (12.9 km) 
of each fire perimeter, on each day that the fire burned.  The next eight housing variables 
represented the total area of developed land within those same distances, per fire day.  The last 
housing variable was an estimate of the number of homes at risk as reported by fire crews in the 
daily paperwork for each fire. 

 

Data Source
Total Daily Cost ISUITE Forms
Size of Fire GIS Perimeter Files
Rate of Spread GIS Perimeter Files
Percent Contained 209 Forms
Wind Speed 209 Forms
Temp. taken by Fire Crews 209 Forms
Temp. Weather Station at 5 pm Nearest Weather Station
Temp. Weather Station 24hr Low Nearest Weather Station
Temp. Weather Station 24hr High Nearest Weather Station
Relative Humidity 209 Forms
Fire Growth Potential 209 Forms
Terrain Difficulty 209 Forms
Mean Vegetation Height LANDFIRE
Mean Fire Severity Rating LANDFIRE
Points of Road Access MT Dept. of Admin.
Length of Intersecting Roads MT Dept. of Admin.
Major Infrastructure Threatened MT Dept. of Admin.
Homes within 1 mi. (1.6 km) of wildfire Tax Assessor Records
Homes within 2 mi. (3.2 km) of wildfire Tax Assessor Records
Homes within 3 mi. (4.8 km) of wildfire Tax Assessor Records
Homes within 4 mi. (6.4 km) of wildfire Tax Assessor Records
Homes within 5 mi. (8.0 km) of wildfire Tax Assessor Records
Homes within 6 mi. (9.7 km) of wildfire Tax Assessor Records
Homes within 7 mi. (11.3 km) of wildfire Tax Assessor Records
Homes within 8 mi. (12.6 km) of wildfire Tax Assessor Records
Developed area within 1 mi. (1.6 km) Tax Assessor Records
Developed area within 2 mi. (3.2 km) Tax Assessor Records
Developed area within 3 mi. (4.8 km) Tax Assessor Records
Developed area within 4 mi. (6.4 km) Tax Assessor Records
Developed area within 5 mi. (8.0 km) Tax Assessor Records
Developed area within 6 mi. (9.7 km) Tax Assessor Records
Developed area within 7 mi. (11.3 km) Tax Assessor Records
Developed area within 8 mi. (12.9 km) Tax Assessor Records
Homes at Risk 209 Forms
Evacutation in Progress (Y/N) 209 Forms

Table 1. Data collected for each day of firefighting for each of the 18 wildfires studied.
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Candidate Models 
 
Within each wildfire, there were cases when data were missing for particular dates.  

Usually this was due to a lack of GIS perimeter data on individual dates when weather did not 
permit flying or the capture of satellite imagery for digitizing fire perimeters.  This type of data is 
known as repeated measures or longitudinal, with the time series within each fire containing 
missing or unequally spaced observations, which was important in choosing the correct statistical 
method of analyzing the data.  In order to focus the analysis on explaining the daily variation in 
costs within the timeline of each individual fire, the response variable for the statistical analysis 
was the average daily wildfire cost since the last date with available data.   

We considered four models to address the non-independence in the daily observations 
within each fire:  

(1) A linear model that does not attempt to model correlation, and therefore does not attempt 
to address non-independence. 

(2) A mixed model with random intercepts to account for the possibility that observations 
within each fire have a common mean that is not explained by the explanatory variables. 

(3) A linear model that fits the residual autocorrelation with a continuous autoregressive 
(CAR) model, thereby accounting for the possibility that observations close in time 
within each fire share information not explained by the explanatory variables.1  

(4) A linear mixed model that allows for random intercepts and fits the residual 
autocorrelation with a CAR model. 

We fit each model with the entire set of explanatory variables in R Version 2.8.1, using the gls 
and lme functions in R’s nlme package (Pinheiro et al. 2008).  Akaike’s Information Criterion 
(AIC, Akaike 1973) provides a framework for selecting among different candidate models as 
suggested above, with smaller values suggesting models that are closer to the unknown, true 
model.  Burnham and Anderson (2004) suggest a scale for comparison of AIC values with 
models within 2 AIC units being essentially equally supported and larger differences suggesting 
more clear evidence for the model with the smaller AIC.  We found that the model that assumed 
independence performed poorly in comparison to the other models considered.  The model that 
accounted for a CAR process in the residuals within each fire outperformed a pure random 
intercepts mixed model by nearly 200 AIC units.  Because random intercepts did not improve on 
this model further based on AIC values, we selected the CAR model but did not also incorporate 
random intercepts.  The autocorrelation function (ACF) for the CAR model showed no apparent 
pattern in the residuals once we incorporated the CAR structure, indicating that the CAR model 
adequately accounted for the correlation structure in the daily observations. 
 
Selection of a Model with the Best Set of Explanatory Variables 
  

Due to the large number of combinations of the explanatory variables that could be 
considered, we used a stepwise procedure, stepAIC in R’s MASS package (Venables and Ripley 
2002), for selecting the “best” set of explanatory variables.  At each step in the model selection 

                                                 
1 Continuous Autoregressive (CAR) models are an extension of autoregressive (AR) models for residual 
autocorrelation.  CAR models are valid for unequally spaced time series, which is the type of data we have within 
each fire.  Pinheiro and Bates’s Mixed-effects Models in S (2000) describes the use of CAR models in the mixed 
model framework.  Another good discussion of AR (and the more general ARMA) models is presented in Chapter 3 
of Shumway and Stoffer’s Time Series Analysis and Its Applications with R Examples (2006).   
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process, the computer fit all models with one fewer predictor than the current model and all 
models with one additional predictor than the current model (within the set of variables 
considered).  The model with lowest AIC was selected, and then the process was repeated.  The 
model selection terminated when the lowest AIC model was the current model.  Due to 
collinearity between the housing variables and to allow for ease of interpretation, we only 
allowed one housing variable to enter the model for any given stepwise selection.  There were 17 
housing variables.  Therefore, we ran the stepwise process 17 separate times, selecting the top 
model across the different versions of the housing variables.   
 
Cross Validation and Weighting of Residuals 

 
We used cross-validation (Stone 1974) to assess the predictive accuracy of the best 

model.  Ordinarily, researchers cross validate by dropping one observation from a dataset at a 
time, fitting the model using the remaining observations, and using the new fitted model to 
predict the deleted observations.  In our case, where we were modeling the dependence of 
observations as a time series within each fire, dropping one observation at a time would be 
problematic in that it would not preserve the same basic model structure.  We therefore dropped 
all observations from a fire at the same time, fitting the model on the other 17 fires, and then 
computing the predicted values and prediction errors for the deleted observations in the fire that 
was dropped.  

After computing the predicted values and prediction errors for each observation in this 
manner, we computed the mean squared error in these predictions (called the mean squared error 
of prediction, MSEP) to obtain an estimate of the prediction error.  We took the square root of 
MSEP to generate an estimate of the standard deviation of the predictions from the model.  We 
also computed the square root of the MSEP divided by the average daily cost for each individual 
fire.  The square root of the MSEP divided by the average daily cost yielded a measure similar to 
the coefficient of variation.  Calculating these metrics for each fire allowed us to assess how the 
model performed on different fires and learn more about the performance of our model.   
 The cross validation indicated that bigger fires had bigger prediction variability, 
suggesting that weighting the residuals as a function of the mean cost may improve the model.  
We therefore repeated the stepwise model selection procedure, weighting the residuals of each 
model, and compared AIC values of models under the weighted and unweighted regression 
schemes. 
 
Estimated Costs associated with Home Construction and Temperature 

 
Based on the coefficient estimates from the weighted CAR model with the lowest AIC 

value, we extrapolated beyond our sample of 18 fires to estimate the costs associated with homes 
for each year from 1985 to 2007.  To generate these estimates we used spatial databases of 
historic fire seasons available from the U.S. Forest Service and the Montana Department of 
Natural Resources, and GIS estimates of the extent of housing that was threatened by the 
wildfires each year, derived from Montana tax assessor records.  For example, to generate the 
home protection cost estimate for 2007, we summed the acres of residential lots within one mile 
of large forest fires that occurred that year.  We used the acreage of residential lots within one 
mile of fires because this was the explanatory variable identified in the weighted CAR model 
with the lowest AIC value.  We obtained an estimate of daily cost associated with home 
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protection, holding other explanatory variables constant, by multiplying the acreage of 
development by its coefficient estimate in the best model.  We multiplied this estimated daily 
cost by 23, which was the average number of days that homes were within one mile of a fire 
perimeter in our sample.  This use of the model coefficients amounts to a linear transformation of 
the area of residential development, which affects only the units on the coefficients and allows an 
economic interpretation.  Because our sample of 18 fires did not include grassland fires or fires 
smaller than 320 acres (129.5 ha), we estimated costs only for large fires that burned 
predominantly in forest and shrubland.  As a result, our estimates of annual home protection 
costs are conservative. 

Next, we asked “What if similar fire seasons to those we have seen in recent years 
occurred in the future when more homes are present?”  To answer this question, we used GIS to 
overlay maps of all the large (greater than 129.5 ha) forest fires that occurred in each year, from 
1985 to 2007, over the 2025 development projection.  This method followed the same steps as 
those used to calculate the historic cost estimates, except that the estimates were based on the 
extent of threatened development in 2025 rather than the extent of threatened development that 
was actually present during each of the past fire seasons.  The housing forecast methodology is 
based on a continuation of recent growth rates and trends observed in Montana.  It is described in 
detail in Gude et al. 2007. 
 Finally, we compared the mean estimated cost of home protection to annual fluctuations 
in temperature data available from the National Climatic Data Center (NCDC).  For each year 
between 1985 and 2007 we calculated the mean monthly temperatures for April through August 
(NCDC 2009), averaged across the four U.S. Climate Divisions that make up western and central 
Montana.  We used this method, adapted from Westerling et al. (2006), to characterize annual 
variability in spring and summer temperatures.  Whereas Westerling et al. used the mean March 
through August temperatures to develop an index for the entire western United States, we 
averaged April through August temperatures because snow continues to accumulate in March 
throughout most of Montana (NRCS 2009).   

We ranked the home protection cost estimates for each year from 1985 through 2007 by 
each year’s average spring/summer temperature, and compared the cost estimates from: (1) the 
five coolest years, (2) the five warmest years, and (3) the five most recent years.  We then 
assessed the relationship between the annual averaged April through August temperatures and 
wildfire variables, including the total area of large (greater than 129.5 ha) forest fires and the 
estimated cost of home protection per year using similar modeling techniques as those 
considered above.  As we did for modeling the individual wildfire data, we accounted for the 
correlation structure in the observations, with correlation between the two responses within each 
year and also between years (described in detail in the supplementary materials).  Both response 
variables, total area burned and cost of home protection, had to be log transformed in order for 
the relationships to be linear and the residuals to be approximately normal.  Improvements based 
on allowing non-constant variance models also were discovered in these models.  Lastly, based 
on the results of this model and the intersection of the 2025 housing projections with past fire 
seasons, we estimate how the cost of protecting homes from wildfires may respond to 
temperature changes in the future. 
 
RESULTS 
 
Stepwise Model Selection and Cross Validation 



 

 9

 
Eleven of the 17 stepwise model selection processes, each run with only one of the 17 

possible housing variables, yielded a top model that included among the explanatory variables a 
housing variable.  Nearly all of the selected models also had as explanatory variables: the total 
area of the fire, the daily rate of spread, the number of points at which roads intersected the fire 
perimeter, and the terrain difficulty as reported by fire crews.  The frequency in which these 
variables were included in the selected models suggests that they are important in their 
association with daily fire suppression costs. 

All eight models that included counts of threatened homes within varying distance of fire 
perimeters performed comparably (within 2 AIC units) (Table 2).  These models will be referred 
to as Count1, Count2, Count3, ..., Count 8.  With one exception, the models with housing 
variables representing the area of threatened residential property did not perform as well as the 
models with housing variables representing the counts of threatened homes (Table 2).  These 
models will be referred to as Area1, Area2, Area3, …, Area 8.  The exception was the Area1 
model, which performed similarly (within 2 AIC units) to those models including counts of 
homes.  The other model that performed comparably well included the estimate of the number of 
homes at risk as reported by fire crews in the daily paperwork for each fire.  This variable is 
interesting in that it may incorporate conditions that could not be accounted for in GIS derived 
housing variables.  It is also interesting in that the number of threatened homes as reported by 
fire crews likely influences the level of resources committed to suppressing the fire. 

Of the 17 models resulting from the stepwise process, the Count6 model was the top 
ranked model.  Through the cross validation process, we found that the estimated standard 
deviation of predictions from the model was $205,107, or just over half of the average daily cost 
($394,425).  After weighting the residuals, we found that the estimated standard deviation of 
predictions from the weighted Count6 model was $202,879, which represents a small 
improvement over the unweighted model. 

 

Development Variable AIC AIC (weighted residuals)
Count6 7520.34 7513.87
Count8 7520.70 7514.67
Count7 7520.84 7514.51
Count2 7521.05 7511.36

HomesAtRisk 7521.14 7510.09
Count4 7521.38 7514.05
Area1 7521.38 7490.09

Count5 7521.54 7514.36
Count1 7521.55 7510.43
Count3 7522.31 7513.33
Area8 7524.71 7514.75

Table 2. AIC values for the selected models when only one development 
variable was allowed.

 
 
Using the unweighted Count6 model, each fire, with the exception of the Pattengail fire, 

had a smaller standard deviation of prediction estimate than its average daily cost (Table 3).  
Using the weighted model, the standard deviation estimate for the Pattengail fire was 2.72 times 
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the average daily cost.  The Pattengail fire was anomalous in several ways that may have 
contributed to the model’s overestimation of daily suppression costs for that particular fire.  It 
was the only fire over 1000 acres (404.7 ha) in our sample with no homes within 2 miles (3.2 
km) of the perimeter.  It was also the longest-burning fire within our sample (burning a total of 
83 days, well into October) with the fewest personnel assigned to the fire (on average 50 persons 
per day).  It is possible that this fire was a low priority given the high level of fire activity that 
was occurring simultaneously throughout Montana and the rest of the western U.S. during late 
summer in 2007. 
 

Fire Sqrt(MSEP)/Mean(Cost)
Sand Basin 0.11
Black Cat 0.19
Chippy Creek 0.23
Brush Creek 0.28
Meriwether 0.28
Woodchuck 0.39
Derby Fire 0.42
Jocko Lakes 0.44
Gash Creek 0.45
WH Complex 0.51
Sun Dog 0.52
Sawmill Complex 0.54
Rombo Mountain 0.54
Ahorn 0.55
Skyland 0.71
Rat Creek 0.75
Novak 0.95
Pattengail 2.68

Table 3. Estimates of the standard deviation of 
prediction per fire were generated by dividing 
the square root of the mean squared error of 
prediction by the average daily cost for each 
individual fire.

 
 

 The improvement in accuracy gained by weighting the residuals suggests that the 
unweighted fits may have been affected by some extreme observations.  Therefore, we repeated 
the stepwise model selection procedure, weighting the residuals of each model.  For every 
model, weighting improved the fit (Table 2).  The Area1 model had the lowest AIC after 
weighting.  Among the count variables, the Count1 model had the lowest AIC after weighting.  
Both of these models resulted in slightly higher estimated standard deviation of predictions 
($212,104.90 and $209,021.50 respectively) than the weighted Count6 model.  This is possible 
since the AIC and the cross-validated MSEP estimate predictive accuracy in different ways, with 
cross-validation using withheld observations to measure predictive accuracy and AIC estimating 
prediction error using a function of the likelihood and the complexity of the model.  In this 
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paper, we provide interpretation of the explanatory variables and coefficient estimates from each 
of these three models to give a more complete picture of the underlying process.  In the 
following interpretations of the model coefficients, it is important to remember that the effect of 
each variable is interpreted conditionally on the other variables that are included in that model. 
 
Interpretation of Top AIC Models for 2006-2007 Cost Data 

 
In the Count1 and Count6 models, the response variable, daily fire suppression cost, was 

positively correlated with the area of the wildfire (Table 4).  This explanatory variable was not 
included in the Area1 model, possibly due to redundancy between the area of the wildfire and the 
area of development within 1 mi. (1.6 km) of wildfires. 
 

Explanatory Variable Count1 Model Count6 Model Area1 Model
Homes within 1 mi. (1.6 km) of wildfire 344.90  (0.0223) - -
Homes within 6 mi. (9.7 km) of wildfire - 53.92  (0.0150) -
Developed area within 1 mi. (1.6 km) - - 28.88  (0.0000)
Size of Fire 2.24  (0.0012) 2.65 (0.0006) -
Rate of Spread -2.40  (0.0312) -2.65 (0.0183) -1.02 (0.2696)
High Terrain Difficulty 636.91  (0.9764) 2744.57 (0.9011) -13527.90 (0.4702)
Med. Terrain Difficulty 125567.49 (0.0225) 138867.36  (0.0095) 100232.98 (0.0910)
Points of Road Access 3375.97  (0.0001) 3114.71  (0.0003) 3827.26  (0.0000)

Table 4. Coefficient estimates and significance levels for models predicting the average daily wildfire 
suppression cost.  The entries in the table are coefficient estimates from a weighted gls fit accounting for CAR(1) 
errors.  P-values in parentheses.

 
 
 

In all three models, the cost was negatively related to the rate at which wildfires spread 
(Table 4).  In other words, days in which more costs were incurred tended to be days in which 
fires decreased in size.  In all three models, daily suppression costs were positively associated 
with the number of points in which roads intersected a fire perimeter.  Fewer access points to the 
fire suggest that the fire is more remote.  In general, higher densities of roads exist on private 
lands where development or resource extraction has taken place.  The positive relationship 
between road access and cost may reflect that more resources are used to battle fires on land 
utilized for development or resource extraction than on remote public lands.   

The nature of the relationship with terrain difficulty also appears to incorporate 
remoteness, with the higher levels of cost incurred on days when fire crews reported the terrain 
difficulty as medium and high, when compared to days when the fire crews reported the terrain 
difficulty as extreme.  In all models, the cost differences between medium and extreme were 
much larger (at least $100,000) than the differences between high and extreme (no evidence of a 
difference between high and extreme costs except in the Area1 model where high difficulty was 
found to cost less than extreme).  Across the fires in our sample, those that spread into valley 
bottoms and intersected with greater levels of human development were consistently reported to 
have medium to high terrain difficulty, and those that burned on remote or rugged mountainous 
landscapes were reported to have extreme terrain difficulty.  Low terrain difficulty was never 
reported within our sample of fires. 
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Any measure of development pressure in the Count6, Count1, or Area1 models had a 
positive relationship with daily firefighting costs.  For example, an additional home within one 
mile of a fire’s perimeter is associated with a $344.90 (95% CI: 50.77 to 639.03) increase in 
average daily wildfire fighting cost.  To put this in perspective, if one house is within one mile 
(1.6 km) of a fire perimeter for the entire duration of the firefighting effort (on average, 
approximately 38 days), this would be associated with an additional $13,106 (95% CI: $1,929 to 
$24,283) in wildfire firefighting cost.  However, more commonly homes are only within one 
mile of the fire for a portion of the time the fire is burning.  On average, when fires burn near 
homes, homes are within a mile of the fire perimeter for 23 days.  Therefore, after accounting for 
differences in fire size, terrain, and road access, each additional home within one mile of a 
wildfire is associated with a $7,933 (95% CI: $1,167 to $14,697) increase in suppression costs 
and each additional home within six miles of a wildfire is associated with a $1,240 (95% CI: 
$247 to $2,233) increase in suppression costs (Figure 2).  Put differently, 125 homes within one 
mile of a wildfire are associated with a $1 million (95% CI: $145,963 to $1,837,211) increase in 
fire suppression costs. 
 

 
 

Figure 2.  After accounting for differences in fire size, terrain, and road access, each additional 
home within one mile of a wildfire is associated with a $7,933 increase in suppression 
costs and each additional home within six miles is associated with a $1,240 increase. 
 
Interestingly, the highest ranked model according to AIC values incorporated information 

about the area of residential lots rather than the counts of homes within one mile (1.6 km) of 
wildfires.  We found that after accounting for differences in terrain difficulty, fire size, and road 
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access, each additional acre of residential property within one mile of a wildfire is associated 
with a $664 increase (95% CI: $369 to $959) in wildfire costs (over the average duration of 23 
days).  The average lot size of homes that were threatened by the 18 fires in our sample was 12 
acres, and if you multiply the cost per acre ($664) by 12 acres, you get $7968 (roughly the cost 
per home as estimated in the Count1 model, 95% CI: $4,430 to $11,512).  One possible reason 
that the Area1 model outperformed the Count1 model is that the Count1 model is missing 
information about the spatial distribution of those homes.  In other words, the pattern of 
development (dense vs. spread out) appears to be related to fire suppression costs. 

We used the most parsimonious of the top ranked models (Area1) to estimate the portion 
of each fire’s suppression costs that were related to housing.  Within our sample of 18 fires, the 
resulting estimate of the portion of the fire suppression costs related to housing varied from 0 to 
56% depending on how much development surrounded each fire (Figure 3).  Estimated home 
protection costs made up more than 25 percent of total costs in seven of the 18 fires.   

We also estimated from the Area1 model that costs related to housing exceeded $1 
million for the ten fires in our sample that were greater than 2000 ac. (809 ha.) and that occurred 
in more densely developed areas.  For these fires, which were neither remote nor small, 
estimated suppression costs related to housing totaled $35 million (30% of the total firefighting 
costs).  For the 18 fires in our sample, the estimated suppression costs related to housing ranged 
from $0 for the Sun Dog fire to $8.4 million for the Derby fire (Figure 3).  
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Figure 3.  The estimated suppression costs related to homes ranged from 0 to 56 percent of the 

total suppression costs for this sample of fires. 
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Implications of the Model beyond Our Sample 
 
We used the coefficient estimates from the Area1 model to predict beyond our sample the 

component of firefighting costs associated with housing for each year from 1985 to 2007 (Figure 
4).  To stay within the range of conditions present in our sample, we estimated costs only for 
fires greater than 320 acres (130 ha) that burned predominantly in forest and shrubland.  The 
estimated costs of home protection ranged from $106,000 in 1997, a year in which only 661 
acres (261 ha) burned, to $71 million in 2000, a year in which 723,092 ac (292,625 ha) burned.  
Five of the past 23 years (1988, 2000, 2003, 2006 and 2007) stand out as having exceptionally 
high costs related to home protection. 
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Figure 4.  Since 1985, five years (1988, 2000, 2003, 2006 and 2007) stand out as having 

exceptionally high estimated costs related to home protection. 
 

The locations of wildfires relative to housing vary from year to year, and, consequently, 
so do the suppression costs associated with home protection.  Although years with many large 
fires tend to result in high costs related to home protection, the highest estimated expenditure on 
home protection in the past decade occurred in 2000.  This was the year in which the most 
residential land was threatened, but not the biggest fire year in terms of total area burned.  The 
years 2006 and 2007 are also interesting to compare since, in total, more acres burned in 
Montana in 2007, yet the estimated cost related to protecting homes near the 2007 fires was less 
(Figure 4).  One explanation for this is related to the development pattern in the areas 
surrounding the fires.  In 2006, forest fires burned in areas with more housing.  In 2007, there 
were more forest fires, but many of those fires burned in remote areas.   

We estimate the total suppression cost related housing to be $92.2 million for large fires 
in Montana during the 2006 and 2007 fire seasons.  Although we do not have sufficient data to 
estimate the portion paid by the state of Montana, we do know that in our sample of 18 fires, the 
state of Montana paid approximately 25 percent of the total fire suppression costs in those fires 
where more than 1,000 acres (404.6 ha) of residential land were within one mile of the fire 
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(personal communication, Matt Hedrick, MT DNRC, July 31, 2008).  Based on this figure, we 
estimate that Montana paid $13.9 million in 2006 and $9.1 million in 2007 on home protection.  
Most of the remainder was paid by federal agencies, including the Federal Emergency 
Management Agency (FEMA).  These estimates of Montana’s share of home protection costs are 
likely conservative because most homes in the interface occur where the state and local 
governments are responsible for providing wildfire protection.  Montana may pay 25 percent of 
the total firefighting costs, but a larger share of the cost related to home protection.  What’s 
more, as the development in fire prone areas continues, it is likely that state and local 
government will pay an increasing share of the costs related to home protection (personal 
communication, Bob Harrington, MT DNRC, August 6, 2008). 
 
The Relationship between Suppression Costs, Future Housing, and Temperature 

 
When we overlapped past fire seasons with the 2025 housing forecast (Gude et al. 2007), 

we found that average home protection costs from 1985 to 2007 would have been 72 percent 
higher had the additional homes from the 2025 forecast been present (Figure 4).  For example, 
we found that the 2025 development forecast resulted in an additional 35 thousand acres of 
residential land occurring within one mile of the 2006 fires.  Had these additional homes been 
present in 2006, firefighting costs related to home protection would have been roughly $23 
million higher, totaling $78.9 million2 (a 41 percent increase).     

When we ranked years by their average spring/summer temperature, the five coolest 
years (1993, 1995, 1997, 1999, and 2002) had a mean average April-August temperature of 
54.8˚F (12.6˚C) (Table 5).  The average estimated cost of protecting homes from wildfires that 
occurred during these years was $1.9 million ($1.6 million median).  By comparison, the average 
estimated cost of protecting homes from the wildfires that occurred during the five warmest 
years (1988, 2000, 2003, 2006, and 2007) was $42.5 million ($36.2 million median).  During 
these five years, the mean average spring/summer temperature was 58.7˚F (14.8˚C).  During the 
five most recent years in our sample (2003 through 2007), the mean average April-August 
temperature was 57.5˚F (14.2˚C), and the average estimated cost of protecting homes from the 
wildfires was $27.6 million ($29.1 million median). 

Average April-
Aug. Temp.

Average Estimated Cost of 
Protecting Homes from Wildfires

Five Coolest Years 54.8 $1.8 Million
Five Warmest Years 58.7 $42.5 Million
Five Most Recent Years 57.5 $27.6 Million
Five Most Recent Years + 2025 Housing 57.5 $40.4 Million
Five Most Recent Years + 2025 Housing + 1°F 58.5 $83.6 Million

Table 5.  Each year from 1985 through 2007 was ranked by its average spring/summer temperature.  
Estimates are given for the cost of home protection during the five coolest, warmest, and most recent years.  
Estimates of how home protection costs may change if similar fire seasons occur in 2025 are also presented.

 
 

                                                 
2 In 2025 dollars, this figure adjusted for inflation using the Congressional Budget Office’s inflation projections is 
$124.0 million.  This figure is a rough estimate since future inflation rates are unknown. 
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In the model relating the bivariate fire times series to average spring/summer 
temperatures, we found evidence (using a similar approach to the previous model building) to 
support a model that includes a relationship between the log-area and log-dollars responses and 
temperature after accounting for the bivariate-AR(1) correlation structure and non-constant 
variance. Diagnostics showed no apparent violations of model assumptions  We found that a one 
degree increase in average spring/summer temperature is associated with a 305 percent increase 
in hectares burned (95% CI: 164 percent to 523 percent), and a 107 percent increase in home 
protection costs (95% CI: 52 percent to 180 percent). These results are interpreted as percentage 
increases since the models were fit using a log-transformation, making the results on the original 
scale nonlinear as can be seen in Figure 5. 
 

 
 
Figure 5.  The natural logs and raw data of total area burned and estimated home protection costs 

are plotted against mean March through August temperatures for each year from 1985 to 
2007. 
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Based on the intersection of the 2025 housing projections with past fire seasons, we 
estimated that, had the projected homes been present during the fire seasons that occurred during 
the past five years, the cost of home protection would have been 46 percent higher ($40.4 
million) (Table 5).  According to the Intergovernmental Panel on Climate Change’s more 
conservative scenarios (SRES A1B and B1), Montana may experience an approximate one 
degree Fahrenheit (0.55 degree Celsius) increase in temperature by 2025 (Intergovernmental 
Panel on Climate Change 2001).  If, in addition to the projected homes, the average spring and 
summer temperature increased by one degree, our regression model suggests that home 
protection costs could grow by another 52 to 180 percent ($61.4 million to $113.2 million).   
 
DISCUSSION 

 
Through quantifying the additional wildfire suppression cost associated with housing, our 

research informs policymakers on the consequences of residential development in wildfire prone 
areas.  The local determinants of wildfire suppression cost, such as terrain difficulty, cannot be 
managed once a wildfire has begun to burn.  Nevertheless, our analysis suggests that long-term 
policies restricting development in the wildland-urban interface and addressing climate change 
can significantly reduce the budgetary cost of wildfire suppression. 

We find that when large forest fires burn near homes, costs related to housing exceed $1 
million per fire, on average.  Importantly, we find that, in addition to the number of homes that 
firefighters have to protect, the pattern of development (dense versus spread out) is strongly 
associated with suppression costs.  For example, one dense subdivision is less costly to protect 
than the same number of homes spread across a large area of land.  In fact, we found that as few 
as 100 threatened homes, if distributed on 160 acre (64.7 ha) lots, could result in a $10 million 
increase in suppression costs in a single year.  In the Western United States, the wildland 
interface is less densely developed than other private lands (Gude et al. 2007).  We find that 
dispersed housing spread across large areas of fire-prone forest costs more to protect than similar 
numbers of homes in a more concentrated development pattern.   

We also found that for all agencies involved in fire suppression in Montana, the estimated 
average annual costs related to home protection during 2003 through 2007 was approximately 
$28 million.  If current development trends continue, similar fires seasons could cost $13 million 
more by 2025, bringing total fire suppression costs associated with homes to $40 million dollars.  
If, in addition to increased housing in fire prone areas, average spring and summer temperatures 
increased by one degree, home protection costs in Montana would likely grow to between $61 
million and $113 million annually, a two to four fold increase in costs.   

Although federal agencies, such as the Forest Service, Bureau of Land Management, and 
Federal Emergency Management Agency, cover the bulk of wildfire suppression costs, the state 
of Montana covers a meaningful portion of the costs, conservatively, one quarter of the total cost 
of protecting homes from wildfires.  Using this figure, we estimate Montana’s annual share of 
home protection costs to be between $15 million and $28 million by 2025.  This range of home 
protection costs exceeds the state of Montana’s total fire suppression costs in the majority of 
recent years.    

Montana does not budget for wildfire suppression costs on an annual basis (Montana 
Legislative Fiscal Division 2008).  As a result, the Department of Natural Resources and 
Conservation is forced to pay suppression costs by spending funds appropriated for other 
purposes, seeking disaster funds from the Governor, or taking a loan from the state’s general 
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fund.  Fire suppression costs are typically reimbursed from the General Fund at the end of the 
fiscal year, but this requires that the General Fund have a positive ending balance.  In case of a 
shortfall, a special session of the legislature must be convened (as in September 2008) to make 
appropriations to cover costs.  As costs increase in the future, and state budgets are stressed 
during recessions, Montana’s current budgeting system will become more untenable.  If the state 
is forced to make annual appropriations for tens of millions of dollars, funding will be cut from 
other programs unless new revenue is generated to cover fire suppression costs.   

For context, it is instructive to point out that the projected fire suppression cost associated 
with housing development and climate change, even at the lower end of the range ($15 million), 
is greater than the Montana Department of Agriculture’s entire budget, and exceeds the state's 
annual contributions to such programs as child support enforcement, the department of military 
affairs, the library commission, and the department of environmental quality. 
 
Policy Review and Implications 

 
Existing federal and state wildfire policies have focused on improving fuels management 

(Stephens and Ruth 2005; Gude et al. 2007).  The major wildland fire policies since 2000 have 
been the National Fire Policy established in 2001 and designed to be a long-term, multibillion 
dollar effort at hazardous fuels reduction (GAO 2003), and the Healthy Forests Initiative and 
Healthy Forests Restoration Act, introduced in 2002 and 2003 respectively, aimed at shortening 
administrative and public review by limiting appeals processes.   

With few exceptions, state policies addressing the wildland urban interface have not been 
regulatory, and those states that have gone beyond incentive driven and voluntary measures, 
have focused almost entirely on fuels reduction projects.  For example, California state law 
requires that homeowners in the WUI clear and maintain vegetation specific distances around 
structures (e.g., defensible space); Utah sets minimum standards for ordinance requirements 
based on the 2003 International Urban Wildland Interface Code; and, Oregon sets standards for 
defensible space, fuel breaks, building materials, and open burning on the property (Gude et al. 
2007). 

Importantly, thinning, prescribed fire, and the existing laws that address defensible space, 
ingress, egress, and water supply can provide a safer environment for firefighters and enable 
more structures to be saved.  However, the extent to which these measures impact wildfire 
suppression costs, particularly in the wildland urban interface, is unknown.  In many cases, these 
measures are prohibitively expensive.  For example, markets for the products of thinning 
activities are limited.  A comprehensive economic analysis is needed that evaluates whether 
investments in fuels treatments reduce firefighting costs. 

It is possible that fuels management in the WUI has little impact on firefighting costs, or 
even increases costs by sending the message that homes can be built safely in fire prone areas.  
In some cases, policies that address fuels may create a safe enough environment to allow some 
homeowners to “shelter-in-place”, a strategy promoted in Australian communities in which a 
homeowner remains to protect his or her property (Cova 2005).  However, sheltering-in-place 
can result in loss of life, as was recently seen in Australia’s Victorian bushfires in which more 
than 200 people lost their lives.  This also puts an additional burden on firefighters of having to 
protect not only structures, but lives.  

In the United States, state policy makers have responded to growing WUI concerns by 
encouraging local government to act.  For example, the majority of western states have enacted 



 

 19

legislation that either encourages counties to prepare plans that would reduce wildfire problems 
or clarifies that counties can legally deny subdivisions that do not mitigate or avoid threats to 
public health and safety from wildland fire.  However, there is little incentive for local 
governments to act.  Although local governments may approve new subdivisions in high wildfire 
risk areas, they pay little of the cost of protecting those homes from forest fires.  And, most 
county commissions ultimately control whether or not local ordinances pass.  Even in cases 
where state laws allow for citizen initiated zoning, the county commissions vote whether or not 
to pass each resolution.   

Policymakers have not enacted laws that would ensure land use patterns that are more 
efficient to defend when fires inevitably burn.  No federal or state laws require that counties 
regulate housing densities in high wildfire risk areas.  This is not surprising since, in much of the 
rural United States, zoning is controversial due to its perception as a regulatory taking, where the 
government effectively takes private property when zoning laws limit how it can be used.  
Despite this general opposition to zoning on a state level, state-wide “zoning” already exists in 
many forms, including statewide building codes and subdivisions regulations.  

An alternative policy would be to reform who pays the costs of protecting homes from 
wildfires.  Currently the costs of the firefighting efforts are not borne by those who build at-risk 
homes, or by local governments who permit them. One solution that would dramatically change 
land development patterns in fire prone landscapes is to shift the cost burden, or at least a 
substantial portion of it, from the taxpayers and federal land managers to states, counties, and/or 
home owners. 

In any scenario, wildland fire policies across all levels of government will need to be 
reformed and coupled with strong national and international climate policies to effectively 
address the growing cost of protecting homes.  With this study, we hope to refocus the attention 
of policy makers and communities on the ramifications of current growth trends, and set the 
stage for discussion about the need for a course correction to keep homes and firefighters safe 
and firefighting costs in check. 
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