

BAPP: BUILDING AS POWER PLANT INVENTION WORKS

CENTER FOR BUILDING PERFORMANCE AND DIAGNOSTICS
SCHOOL OF ARCHITECTURE
CARNEGIE MELLON UNIVERSITY

BUILDING DESIGN REQUIREMENTS

- 6 floors, 7,500 square feet each (not including service cores)
- Building's L x W: 43.20m (143.7 ft) by 16.20m (55.12 ft)
- Flexibility for various office layouts, daylight, views and the potential for natural ventilation were goals for this building
- An educational tool as a demonstration of energy efficiency
- It houses classrooms, studios, laboratories, a woodshop, a children's school, and administrative offices
- Underground parking garage for 200 cars
- Built adjacent to an existing historic building, Margaret Morrison Carnegie Hall (MMCH), which is L-shaped and 6 stories
- Connect to MMCH with a 3 story public, central atrium
- The proposed new wing is North-South oriented
- The vertical circulation is designed as modular service cores (bathroom, AHU, PVD closet) that can be plugged into BAPP.

Span:16.20 m (53.15 ft)

Column spacing: 5.40 m (17.72 ft)

Floor Plate: 43.20 m x 16.20 m (143.7 ft x 55.12 ft)

Dimensions of Bay: $5.40 \text{ m} \times 16.20 \text{ m}$ (17.72 ft x

55.12 ft)

No. of Bays per Floor: 8

Floor Tiles: 0.60 m x 0.60 m (2 ft x 2 ft)

The floor plan consists of 8 bays

FLOOR TILES

Floor-to-Floor Height: 4.65m (15.25 ft) Floor-to-Ceiling Height: 3m (9.84 ft) Raised Floor Plenum: 1.65m (5.41 ft) Total Building Height: 18.6m (61 ft) above

grade (plus roof)

SITE STRATEGIES

日日日 OFFICE/GLASS SHOP W/ AND THE THE THE THE PARTY OF TH

- Stormwater collection

 - Rain-garden water feature
 Reflecting pool for daylighting
 Solar Decathlon staging ground

- Organic gardening
 Green roof above underground parking
 Protected playing area for children school
 "Energy Cascade" demonstration plaza
 "Living Machine"- On-site bio-gas & compost

INTERIOR SPACES

SMALL AND LARGE CLASSROOMS/MEETING ROOMS

LARGE CLASSROOMS AND SMALL OFFICES

BUILDING ENCLOSURE SYSTEM

	INTERIOR	INTEGRAL	EXTERIOR
TRANSOM	A1	A2	А3
VIEWING FIELD	B1	B2	В3
BRUESTUNG	C1	C2	C3
SPANDREL D BNOZ	D1	D2	D3

CATEGORIES FOR ENCLOSURE PERFORMANCE SPECIFICATIONS

Thermal Quality

- Too cold or too hot/ R-value
- Simultaneous heating and cooling/ load balancing
- Diurnal swing/ thermal mass
- Too sunny/ S.C.
- Passive solar/ % glass and mass
- Infiltration/ air tightness
- HVAC Integration mixed mode
- HVAC Integration 'reject' heat use

Visual Quality

- Daylight/ transmittance/ % and location glass
- Glare/ diffusion/redirection
- Visual access/ Views and sightlines
- Lighting Integration mixed mode
- Lighting Integration split task and ambient

Spatial Quality

- Physical access to outdoors
- Layout flexibility/ module and % glazing
- Structural integration

Air Quality

- Ventilation/ pressure induced A.C., %/ location/ type of aperture
- Ventilation/ thermally induced A.C., %/ location/ type of aperture
- Ventilation/ solar induced A.C., height, absorption, mass
- Ventilation/ fan induced
- HVAC Integration split thermal and ventilation

Integrity

- Rain-proof type of operation
- Water collection/ plant support
- Material conservations/recyclability

Energy Generation

- PV integration
- Solar Thermal

SKETCHES SHOWING THE POSSIBLE VARIATIONS FOR THE MODULAR FACADE: BALCONIES, GLASS, OPAQUE, & GREEN WALL

MECHANICAL SYSTEM

CONCEPT OF PLUG-AND-PLAY TECHNOLOGY

This technology offers: individual comfort and productivity, organizational flexibility, technological adaptability, and energy and environmental effectiveness.

MECHANICAL SYSTEM PERFORMANCE GOALS

GENERAL REQUIREMENTS

- User-based infrastructures that are modular, reconfigurable and expandable for all key-servicesventilation air, thermal conditioning, lighting, data/voice and power networks
- Flexible infrastructures capable of changing both location & density of services, & supporting reconfiguration of workstations & workgroups
- Ambient-Task Systems, where users set task requirements & the central system responds with the appropriate ambient conditions.
- Central capacities of power, data, voice, cooling, heating and ventilation must be flexible and incorporate add-on capacities
- Modular 'satellite closets' (service cores) connected to accessible vertical distribution
- · Distributed local control for dynamic organization with differing equipment and occupant densities
- Predominantly floor-based infrastructures.

HVAC GUIDELINES

- Ventilation: Deliver breathing air independent of thermal conditioning (heating and cooling).
- Mixed-Mode Conditioning: Integrate natural & mechanical conditioning systems.
- Flexibility: Design a flexible infrastructure that provides user accessibility and control to HVAC end units.
- Thermal Zones: Design thermal zones for continuous change in zone size and individual control of local conditions.
- Load Balancing: Integrate enclosure and mechanical systems.
- Energy and Material Conservation: Select mechanical system components considering energy efficiency, material life cycles, and their service lives.
- Maintenance: Provide easy maintenance access for HVAC equipment.
- Controls: Create modular, distributed, controls; communicating, modifiable building automation systems.

CONCEPT OF GRID AND NODES

ZONING

Desired

HORIZONTAL DISTRIBUTION AND LAYERING

