Waxman-Markey (H.R. 2454) Refining Sector Impact Assessment

prepared for the American Petroleum Institute by

EnSys Energy

1775 Massachusetts Avenue, Lexington, MA 02420, USA

(781) 274 8454

www.ensysenergy.com

August 21st 2009

Assessment Goal & Methods

Objective

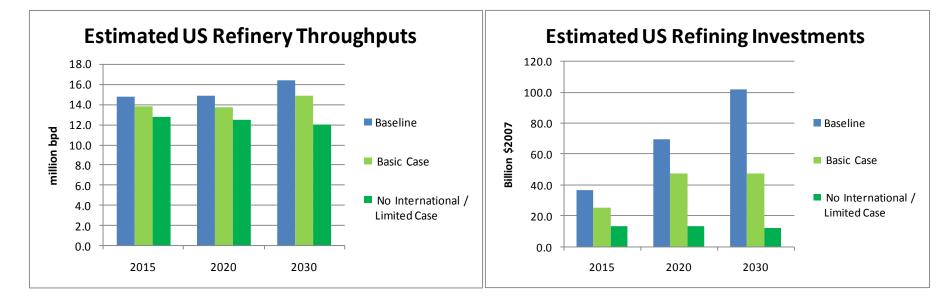
- Identify and assess potential impacts of House passed Waxman-Markey H.R. 2454 on US refining sector
- Methods and Key Baseline Assumptions
 - Used EnSys' WORLD refining model
 - Reference and scenario cases based upon EIA's analysis of Waxman-Markey
 - Including Baseline, Basic and No International/Limited cases

Key Findings

 Based on EnSys' modeling, by 2030, Waxman-Markey would:

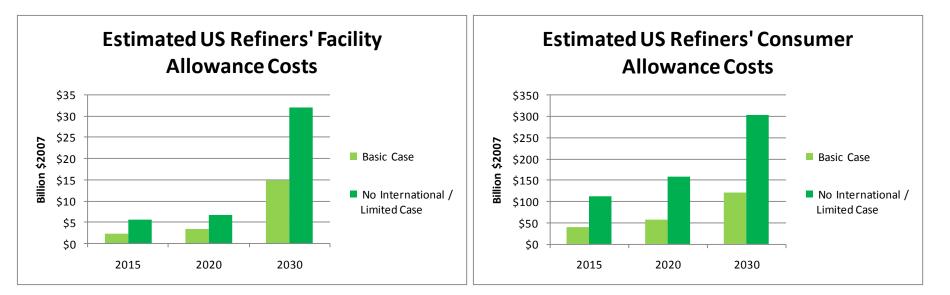
– Reduce US refining throughput by up to 4.4 mbd

- Gulf Coast and California refineries hit especially hard
- Rest of the world refining throughput increases by up to 3.3 mbd
- US consumption of imported refined products is projected to increase from 9.6% in the baseline case to up to 19.4% of US product supplied
- Reduce annual US refining investments by up to \$89.7 billion (up to 88% decline in investment)
- Reduce refinery utilization rates from 83.3% to as low as 63.4%
- Lead to significant gains in non-US refinery capacity, investment and employment at the expense of the US refining sector

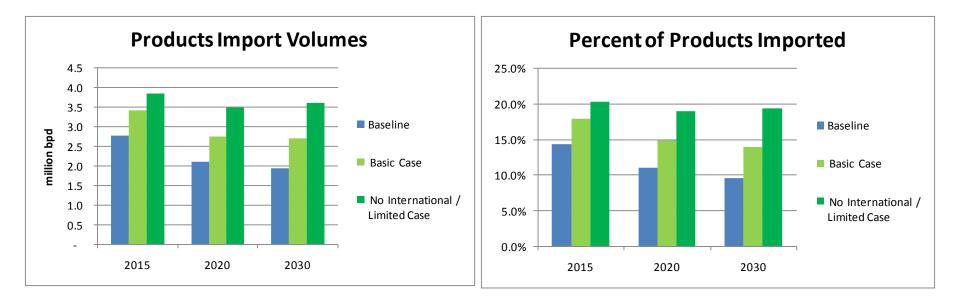


Key Findings (continued)

- In addition, EnSys' modeling shows that under Waxman-Markey:
 - Much of the GHG emissions reductions realized in the US would be offset by increases in GHG emissions in the rest of the world
 - For example net global refinery GHG emissions would drop by up to 39 million Mt CO2e in 2030; 3% of estimated 2030 worldwide refinery emissions (1,242 million Mt CO2e)


Assessment of Key Findings Reduced US refining investments, throughputs & utilizations

These are largely offset by gains at non-US refineries

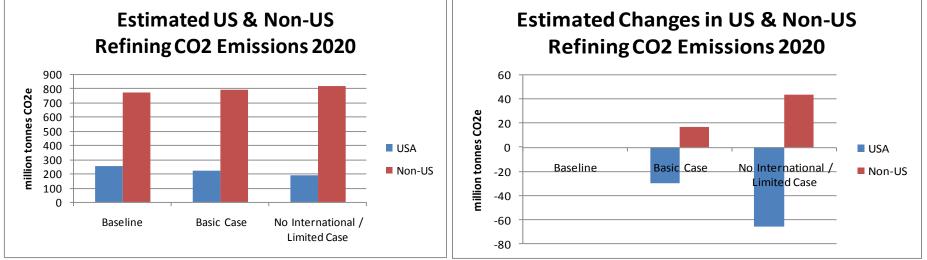


Assessment of Key Findings Increased US refining costs

Hence reduced competitiveness versus non-US refineries

Assessment of Key Findings Increased reliance on product imports

Both absolute volumes and percent

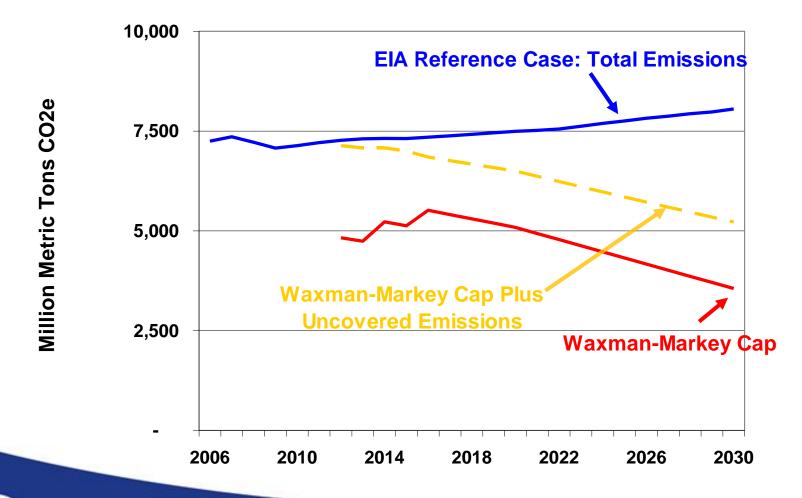

Source: EnSys WORLD Modeling, 2009

7

Assessment Key Findings

Reductions in US CO2 emissions are largely offset by increases from non-US refineries

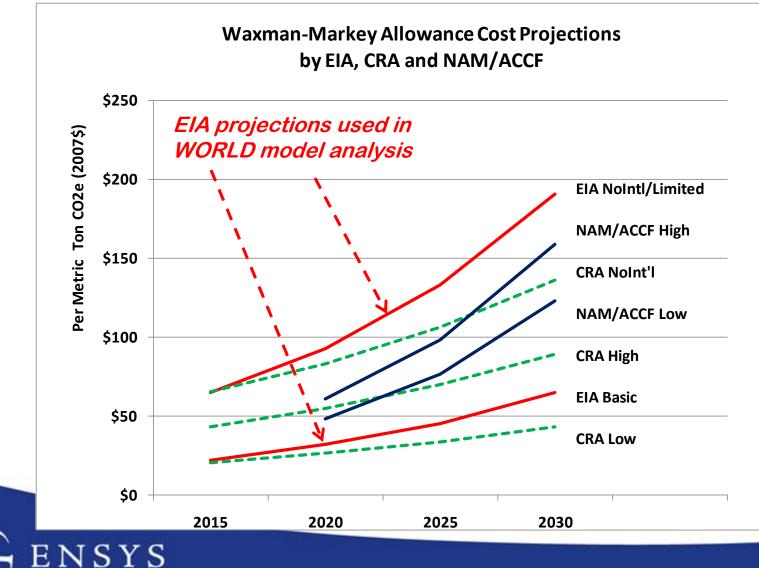
- Same patterns apply 2015 and 2030
- Imposing CO2 costs on US refiners moves emissions from US to non-US regions



Overview of H.R. 2454 Cap & Trade

- Puts a cap on economy-wide GHG emissions
 - Covers an estimated 81% of US GHG emissions by 2016
 - Refineries have a compliance obligation for facility direct emissions and emissions from consumer use of petroleum products produced
 - Refineries have a compliance obligation for about 43% of covered GHG emissions
 - Initially receive 2.25% of total allowances without cost, dropping to zero in 2026

EIA Projected Emissions & Waxman-Markey Cap


NSYS

W-M 2016 Allocated Allowances versus Share of Emissions

Refiners' allocations much below covered emissions

Sector	Sector covered emissions as % of total covered emissions	Allocated % of Allowances under W-M
Refining	43%	2.25%
Electric LDCs	39%	35%
Energy Intensive Mfgs	8%	15%
Natural Gas LDCs	7%	9%
Other Covered Emissions & Other Allowances	3%	39%
Total	100%	100%

Allowance Costs Projections

ERGY

EIA Allowance Costs Used

Allowance Costs \$/tonne CO2e (basis)

	Baseline	Basic Case	No International / Limited Case
2015	\$0.00	\$22.22	\$65.30
2020	\$0.00	\$31.75	\$93.30
2030	\$0.00	\$64.83	\$190.52

Allowances at No Cost million tonnes CO2e / year

	National Allowance Cap	Percentage to Refiners	Refiners' No Cost Allowances
2015	5003	2.25%	113
2020	5056	2.25%	114
2030	3533	0.0%	0

NSYS

Source: EnSys WORLD Modeling, 2009

13

Impacts of Concern

- GHG Allowance Requirements Could:
 - Effectively relocate some future refinery operations overseas, resulting in:
 - Reduced US investment
 - Imports shifted from crude oil to refined products
 - Lost jobs
 - Relocated emissions
 - US refinery allowance costs for facility and consumer emissions would be substantial

Modeling Used to Assess Potential Waxman Markey Impacts

- Ensys WORLD model:
 - Integrated model of the global refining and liquids supply industry
 - Merges "top down" scenarios (from EIA in this study) with "bottom up" detail
 - US is part of the global refining/supply system so interactions with non US regions, crude oil and product trading patterns captured
 - US results reported by PADD
 - EnSys WORLD model used industry wide: DOE, EPA, World Bank, OPEC, International Maritime Organization, Bloomberg, major and specialty oil companies

Modeling of Refining Operations / Allowance Costs

- Estimated refining costs increase for "own" emissions, and purchased electricity, including
 - H2 plant, refinery fuel, FCC coke, sulfur plant tail gas, and flaring
 - EU and Canada also assumed to have allowance costs
- Emissions from domestic and imported refined products treated the same – i.e., allowances needed for consumer emissions

Model Cases

- Base Case:
 - Based on latest EIA Reference Case projection of future liquid fuels supply/demand without climate legislation
- Basic Case:
 - Uses EIA's Waxman Markey "Basic Case" allowance costs and other market impacts
- No International/Limited Case:
 - Uses EIA's Waxman Markey "No International / Limited Case" allowance costs and other market impacts

Modeling Analysis Estimated US Impacts in Global Context

- EnSys WORLD model analysis projects:
 - Reductions in US refining investments, throughputs & utilizations, largely offset by gains at non-US refineries
 - PADD3 (Gulf Coast) most heavily impacted but also PADDs 1 and 5 (East and West Coasts)
 - Increased US refining costs, hence decreased competitiveness versus non-US refineries
 - Increased reliance on product imports / supply sources
 - Reductions in US refinery CO2 emissions largely offset by increases in non-US emissions

Estimated Total Refinery Allowance Costs Under Waxman-Markey

	Facility (1) Emissions Costs	Consumer Emissions Costs	Total		
	Bil	lion 2007\$			
	Ba	asic Case			
2015	2.5	40.3	42.8		
2020	3.4	58.2	61.6		
2030	14.8	120.5	135.3		
	No International / Limited Case				
2015	5.7	112.8	118.4		
2020	6.7	157.5	164.2		
2030	32.0	304.0	335.9		
(1) 2015	5, 2020 facility emissior	ns costs are net of no-o	cost allowances		

Estimated Impacts on US Refining Nationwide

		Baseline	Basic Case	No International / Limited Case
		Investme	ents (billion 2007\$)	
	2015	36.5	25.1	13.1
	2020	69.4	47.5	13.0
	2030	101.9	47.1	12.2
		Throug	hput (million B/d)	
1	2015	14.8	13.8	12.8
	2020	14.9	13.7	12.4
	2030	16.4	14.9	12.0
		%	Utilization	
	2015	77.5%	72.9%	67.3%
	2020	78.0%	72.1%	65.6%
	2030	83.3%	78.1%	63.4%

Estimated US Regional Impacts - 2015

	Baseline	Basic Case	No International / Limited Case
Thr	oughput in 2015	(million B/d)	
PADD-1+PADD-6 (1)	1.7	1.6	1.3
PADD-2 (Midwest)	2.7	2.6	2.6
PADD-3 (Gulf Coast)	7.2	6.7	6.0
PADD-4 (Rocky Mountains)	0.5	0.5	0.5
PADD-5 (West Coast)	2.6	2.4	2.4
USA-Total	14.8	13.8	12.8
Rest of World	58.1	58.9	59.9
Global Total	72.8	72.7	72.7
1. PADD-1 is East Coast, PADD-6 U.S	5. Virgin Islands and P	uerto Rico	

Largest impacts: PADD3 (Gulf Coast) & PADD1 (East Coast)

Estimated US Regional Impacts - 2020

	Baseline	Basic Case	No International / Limited Case
Thr	oughput in 202	0 (million B/d)	
PADD-1+PADD-6 (1)	1.4	1.3	1.2
PADD-2 (Midwest)	3.2	3.0	2.9
PADD-3 (Gulf Coast)	7.1	6.4	5.6
PADD-4 (Rocky Mountains)	0.5	0.5	0.4
PADD-5 (West Coast)	2.7	2.5	2.3
USA-Total	14.9	13.7	12.4
Rest of World	60.0	60.7	61.9
Global Total	74.9	74.4	74.3

1. PADD-1 is East Coast, PADD-6 U.S. Virgin Islands and Puerto Rico

Largest impacts: PADD3 (Gulf Coast) & PADD5 (West Coast)

Estimated US Regional Impacts - 2030

	Baseline	Basic Case	No International / Limited Case
Thr	oughput in 2030	(million B/d)	
PADD-1+PADD-6 (1)	1.4	1.4	1.2
PADD-2 (Midwest)	3.7	3.6	3.2
PADD-3 (Gulf Coast)	7.7	6.8	5.1
PADD-4 (Rocky Mountains)	0.5	0.6	0.4
PADD-5 (West Coast)	3.1	2.5	2.1
USA-Total	16.4	14.9	12.0
Rest of World	66.0	66.9	69.3
Global Total	82.4	81.7	81.3

1. PADD-1 is East Coast, PADD-6 U.S. Virgin Islands and Puerto Rico

Largest impacts: PADD3 (Gulf Coast) & PADD5 (West Coast)

Estimated Impacts on US & Global Refining GHG Emissions

Refining GHG Emissions (million Mt CO2e)					
	Baseline	Basic Case			ernational ted Case
		US	SA 🛛		
2015	236	224	(-5.2%)	200	(-15.4%)
2020	251	221	(-11.9%)	185	(-26.1%)
2030	286	228	(-20.1%)	168	(-41.2%)
		Non	-US		
2015	736	745	(1.2%)	769	(4.4%)
2020	771	788	(2.2%)	814	(5.6%)
2030	957	980	(2.5%)	1036	(8.3%)
World					
2015	972	969	(-0.4%)	968	(-0.4%)
2020	1022	1009	(-1.3%)	1000	(-2.2%)
2030	1242	1209	(-2.7%)	1203	(-3.1%)

Stated GHG emissions figures rounded for reporting

VSYS

Estimated Impacts on Sources of US Petroleum Product Supply

Products Supplied (million B/d)				
	Baseline	Basic Case	No International / Limited Case	
	US Doi	mestic Sources		
2015	16.5	15.6	15.1	
2020	17.1	15.9	14.9	
2030	18.3	16.6	15.0	
	Non	-US Sources		
2015	2.8	3.4	3.9	
2020	2.1	2.8	3.5	
2030	1.9	2.7	3.6	
Percent of Products Imported				
2015	14.4%	18.0%	20.4%	
2020	11.0%	14.8%	19.0%	
2030	9.6%	14.0%	19.4%	
Products supplied figures rounded to one decimal place for reporting				

Products supplied figures rounded to one decimal place for reporting

VSYS